Как устроена релейная защита и автоматики от перенапряжения дома: что это? Советы

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты – это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх – по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, – происходит обесточивание контрольного реле.

Альтернативный вариант — реле контроля напряжения в сети

Бюджетной альтернативой стабилизатору является реле контроля напряжения, которое выполняет оговоренную нами функцию отключения электропитания при выходе напряжения в сети за допустимые пределы. В зависимости от исполнения, устройство срабатывает при перенапряжении, либо контролирует и его нижний уровень.

Существуют модификации реле, которые восстанавливают питание автоматически при его возвращении к допустимым пределам, или это нужно делать вручную. Наиболее совершенные устройства предоставляют возможность установки уровней напряжения, при которых наступает отключение потребителей и времени задержки при возвращении питания. Например, холодильник нельзя включать в сеть повторно в течение пяти минут, чтобы не повредить компрессор. Именно такое значение можно задать на реле.

При этом реле не обеспечивает стабильное напряжение, не компенсирует импульсные скачки и не защищает от грозового перенапряжения. Иными словами, такой способ защиты подходит в ситуации, когда напряжение в сети нормальное, но возможны его редкие и значительные отклонения, в том числе, в результате аварии в сети электроснабжения.

Существуют варианты исполнения для защиты отдельных потребителей в виде удлинителя или моноблока с вилкой и розеткой. Эти устройства рассчитаны на ток нагрузки 6-16А. Аналогичные приборы в модульном исполнении монтируются на электрощите.

Реле модульного типа может иметь на выходе переключающую группу контактов, нормально разомкнутые контакты, а также две отдельные группы нормально разомкнутых или нормально замкнутых контактов. Это позволяет реализовать разные варианты управления питанием потребителей.

Электромонтаж реле напряжения модульного типа можно выполнить по вышеприведенной иллюстрации. В любом случае устройство подключается после входного автомата. Нулевой провод подсоединяется к клемме N, а провода фазы — к нормально разомкнутым контактам реле.

Для защиты более дорогого устройства его номинальный рабочий ток выбирается на ступень выше, чем значение, указанное на корпусе входного автомата. Например, если перед реле установлен автомат на 40А, выбирают прибор с номинальным значением 50А.

Если устройство с необходимым значением рабочего тока отсутствует, либо стоит слишком дорого, его можно заменить реле напряжения с минимальным параметром нагрузки. При этом к его выходу подключается контактор необходимой мощности или пускатель, который подает напряжение на потребители.

Электромонтаж реле напряжения в паре с контактором приведен на схеме. В данном примере собственно реле напряжения подключается также после входного автомата, счетчика и УЗО. Провод фазы с выходного контакта реле подключается к клемме управляющей обмотки контактора, а к ее второй клемме подсоединяется нулевой провод (выступающая часть корпуса). На выходные клеммы контактора (дальняя часть корпуса) сверху подаются фаза питания и ноль, а снизу подключаются провода фазы и нуля потребителей.

При наличии нормального уровня напряжения в сети реле контроля замыкает выходные контакты и подает питание на обмотку контактора. Он, в свою очередь, замыкает выходные контакты и подает питание потребителям. При отсутствии напряжения в сети или выходе его за допустимые пределы цепи последовательно разрываются и питание нагрузки отключается.

В ряде случаев удобно использовать несколько реле напряжения для разных типов потребителей. При этом для наиболее дорогих электронных потребителей, как, например, компьютеры, можно задать с помощью соответствующего реле допустимый диапазон входного питания в пределах 200-230В.

Бытовым электроприборам с электродвигателями, как, например, холодильник или стиральная машина, можно установить диапазон напряжения 185-235В. Потребители типа утюга, обогревателя или водонагревателя могут питаться напряжением 175-245В. Внутренние таймеры реле можно настроить на разное время задержки возобновления питания.

Параметры реле контроля напряжения

Установленное и подключенное реле напряжения его необходимо отрегулировать. Чаще всего в настройке реле напряжения нет необходимости — для защиты оборудования достаточно заводских настроек. Такая регулировка может понадобиться при установке стабилизатора напряжения или возврате к стандартным параметрам.

Настойке подлежат три уставки:

  1. нижний порог срабатывания — 120-200В (стандартное значение 198 В);
  2. верхний порог срабатывания — 210-270В (стандартное значение 242 В);
  3. выдержка времени до повторного включения — 3-600 секунд (стандартное значение 3-5 секунд).

Согласно нормативным документам, определяющим, какое напряжение должно быть в сети, колебания должны быть не более чем ±10%. В сети 220В допустимым является значение 192-242В, на которое рассчитывается бОльшая часть электроприборов. Исключение составляют нагреватели, бойлеры и электроплиты, менее требовательные к параметрам сети.

Время выдержки до повторного включения рекомендуется менять в зависимости от типа подключённого оборудования:

  1. для холодильников, кондиционеров и других устройств с электродвигателями желательно увеличить этот параметр до 300 секунд;
  2. освещение можно пробовать подключить через 5-10 секунд;
  3. при установке во вводном щитке квартиры или частного дома выбирается значение 60-150 секунд.

Классификация

Всё разнообразие приборов релейной защиты классифицируется по следующим основным признакам:

По типу подключения они бывают первичными и подключаются непосредственно в электрическую сеть. Вторичные приборы подсоединяются в неё с помощью трансформатора, дающего гальваническую развязку.

По исполнению они выпускаются электромеханическими: в них сеть замыкается и размыкается с помощью механических контактов. В современных электронных аппаратах цепью управляют полупроводники, при этом не происходит физического размыкания контактов.

По назначению оно может выполнять две задачи: логическую и измерительную функции. Логические приборы принимают решение на основе изменяющихся внешних характеристик системы. Измерительные аппараты производят только замер её значений.

По методу работы приборы классифицируются на прямые и косвенные изделия. Изделия прямого действия механически связаны с блоком отключения, а косвенные управляют механизмом отключения электропитания.

Как выбрать УЗИП для частного дома

Последовательность действий домашнего мастера-электрика для правильного подбора устройств защиты от импульсного перенапряжения представлена картинкой.

Заостряем внимание на том, что установка УЗИП в доме бессмысленна и запрещена правилами при отсутствии:

  1. надежного заземляющего устройства дома:
  2. разрядников на питающей ВЛ и ТП.

Ко второму случаю следует отнести и плохое техническое состояние воздушной ЛЭП. Следует знать, что сейчас идет интенсивная замена открытых проводов ВЛ изолированными СИП (самонесущие изолированные провода). Такие линии называют ВЛИ.

Когда реконструкция ВЛИ выполнена на всем ее протяжении, а не на отдельных участках, прямой удар молнии в фазный провод практически нереален. Работает слой изоляции. Энергетики на подобных линиях усиленно следят за качеством разрядников, поддерживают их в рабочем состоянии.

Выбор схемы включения УЗИП для дома зависит от:

  • системы заземления здания TN-C-S либо TT;
  • местных условий жилища;
  • способов подключения к ВЛ;
  • наличия внешней молниезащиты.

Но, это материал очередной статьи, которая готовится к публикации. Подписывайтесь на рассылку, чтобы своевременно получить уведомление о ее выходе.

Для закрепления материала рекомендуем к просмотру видеоролик владельца Staaaarsky «Демонстрация работы УЗИП».

Более полную информацию предоставляет вебинар компании ABB «Устройства защиты от импульсных перенапряжений».

Возможно, у вас появились вопросы или желание прокомментировать статью. Воспользуйтесь подготовленной формой.

Сейчас самое благоприятное время поделиться прочитанным материалом с друзьями в соц сетях с помощью специальных кнопок.

Полезные товары

  • Лезвия для резьбы по дереву
  • Монета-сувенир для принятия решений
  • Инструмент для вскрытия корпуса планшета

Полезные сервисы и программы

  • Курсы по дизайну
  • Онлайн изучение английского языка с репетитором или самостоятельно

Требования к автоматической частотной разгрузке

Количество мощности, прилагаемой к АЧР должно составлять достаточное значение необходимое для ликвидации недостатка мощности.

Устройство АЧР должно помочь избежать появления «лавины частоты».

Необходимо полное соответствие отключаемой нагрузки значению дефицита мощности.

После срабатывания АЧР значение частоты обязано вернуться в прежнее нормативное значение частоты или на величину не менее 49 Гц.

Помимо автоматической частотной разгрузки I и II категорий существует и используется дополнительная разгрузка, она служит для выполнения разгрузки на местах при слишком высоком значении появления дефицита активных мощностей, когда обеих мощностей АЧР I и II категорий явно недостаточно для предотвращения появившегося дефицита.

Основные органы релейной защиты

Пусковые органы

Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.

Измерительные органы

Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.

Логическая часть

Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.

Пример логической части релейной защиты

Катушка реле тока K1

(контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора токаТА . При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения уставки релеK1 , оно сработает и замкнёт рабочие контакты (11 и 12). Цепь между шинами+EC и-EC замкнётся, и запитает сигнальную лампуHLW .

Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.

Релейная защита: что это такое и когда применяется. Инструкция подключения системы и особенности расчета ее характеристик

Электрические сети служат для передачи и коммутации электроэнергии от генерирующих станций к потребителям. При эксплуатации возникают аварийные ситуации, требующие немедленного мгновенного реагирования. Нештатная ситуация может в короткий промежуток времени привести к порче большого перечня дорогостоящих комплектующих и отключению большого числа потребителей.

Потери бывают очень существенными, так как в сетях осуществляется передача энергии большой мощности. Ещё на заре электроэнергетики в конце 19 века на линии энергоснабжения начали устанавливаться первые простые системы повышения надежности.

Ими служили обыкновенные плавкие предохранители, которые срабатывали при превышении тока выше номинального и минимизировали ущерб при развитии таких нештатных режимов работы потребителей как короткое замыкание.

Современные аппараты работают по принципу реле. Они непрерывно отслеживают один или несколько параметров и при отклонении выше существенного мгновенно срабатывают и выполняют необходимые действия по коммутации схемы электроснабжения. Этот обзор раскрывает общие сведения о защите, как и для каких целей она применяется.

Первые блоки релейной защиты представляли собой простые электромеханические изделия, в которых происходило механическое размыкание контактов с помощью реле при выявлении отклонений. В современных конструкциях зачастую применяются полупроводниковые приборы, которые отключают потребителя без физического размыкания контактов. Такие изделия отслеживают множество опасных изменений в системе.

Благодаря им поддерживается безопасность и работоспособность энергетических систем, надежно и безопасно передается электрическая энергия. Все новые конструкции реле обладают неизменно лучшими характеристиками по сравнению со своими предшественниками.

Краткое содержимое статьи:

Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 – в течение 30 секунд и менее.

Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 – самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.

Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания

Цены на электроизмерительные работы «ПРОФЭНЕРГИЯ»:

Услуги Единица измерения Стоимость за единицу измерения, руб.
Электроустановки свыше 1000 В до 35кВ
Проверка соответствия смонтированной электроустановки требованиям документации проектной документации осмотр От 3000
Проверка наличия цепи между заземлителями и заземляемыми элементами точка От 25
Испытание предохранителей, предохранителей–разъединителей напряжения свыше 1 кВ. Шт. От 490
Испытание силовых кабельных линий напряжением до 20 кВ. Шт. От 9500
Испытание силовых кабельных линий с изоляцией из сшитого полиэтилена напряжением до 35 кВ. Испытание От 8000
Испытание силовых трансформаторов, автотрансформаторов, масляных реакторов и заземляющих дугогасителей номинальным напряжением до 35кВ. мощностью до 63000 кВа Шт. От 15000
Испытание КРУ и КРУН. Шт. От 14900
Испытание масляных, воздушных, вакуумных выключателей, разъединителей, короткозамыкателей и отделителей. Шт. От 1400
Испытание комплекторных токопроводов (шинопроводов). Шт. От 2500
Испытание сборных и соединительных шин. Шт. От 2500
Испытание вентильных, трубчатых разрядников и ограничителей перенапряжения. Шт. От 4000
Испытание вводов и проходных изоляторов. Шт. От 5000
Испытание подвесных и опорных изоляторов Шт. От 6000
Испытание сухих токоограничивающих реакторов. испытание Испытание От 5000
Ревизия ячеек (проверка и наладка релейной аппаратуры) Комплекс От 15000
Испытание электродвигателей переменного тока номинальным напряжением до 20 кВ. Комплекс От 20000
Проверка РУ и их присоединений Комплекс От 10000
Испытания электрооборудования повышенным напряжением 1кВ промышленной частоты Измерение От 500
Испытание синхронных генераторов и компенсаторов Измерение От 8000
Испытание измерительных трансформаторов тока Испытание От 5000
Испытание измерительных трансформаторов напряжения Испытание От 3500
Испытание сухих токоограничивающих реакторов. Испытание От 4500
Испытание конденсаторов. Шт. От 1800
Испытание трансформаторного масла Проба (1 литр) От 8000
Испытание ЛЭП напряжением выше 1 кВ Комплекс От 20000
Комплексные испытания
Проведение электроизмерительных работ с оформлением технического отчета

от 1000В до 35кВ

Приемосдаточные испытания. Комплекс работ От 20000
Эксплуатационные испытания. Комплекс работ От 20000
Для целей сертификации Комплекс работ От 8000
Выезд инженера Выезд Бесплатно
Составление однолинейных схем Шт. От 2000
Составление паспорта заземляющего устройства Шт. От 10000

Автоматика

Электроавтоматика, в отличие от РЗ, не только отключает оснащение, но и включает. В первую очередь, это автовключения: повторное (АПВ) и резерва питания (АВР).

Есть также разновидности с контролем персоналом оснащения релейной защиты, это автоматика:

  • регулировка задействования генераторов, синхронных моторов (АРВ);
  • для выключателей (АУВ), для резервирования их отказов (УРОВ);
  • контроль позиций переключателей ТТ (АРНТ);
  • настраивание дугогасящих обмоток (АРК), статконденсаторов;
  • трансформаторное охлаждение;
  • наладка (синхрон) генераторов;
  • частотный старт гидрогенераторов (АЧП);
  • выявление мест неполадок цепей (ОМП).

Противоаварийная:

  • режимная: частотн. разгрузка (АЧР)
  • задействование деактивированных АЧР систем (ЧАПВ);
  • авторегулирование частоты и действующей мощности (АРЧМ);
  • авторазгрузка по напряжению (ДАРН); по току (ДАРТ);

системная (на особо мощных ЭУ, электростанциях):

  • разгрузка;

исключение ассинхрона, повышения напряжения;
балансировочная.

Способы физического формирования команд.

Из вышесказанного можно выделить следующие подходы к управлению инженерными системами здания от системы пожарной сигнализации:

1. Непосредственно выходами интерфейсных блоков.

Пусковой или релейный блок требует интерфейса для связи с центральным пожарным прибором управления (ППКП) и питания, напряжением 12/24В.

То-есть в место установки блока необходимо протянуть интерфейс и установить там источник питания.

У каждого блока 4-6 выходов. Устройства управления обычно удалены и придется потратить много кабеля.

Или везде локально устанавливать блоки питания.

2. Адресными релейными модулями.

Достаточно всего лишь провести кабель адресной линии связи, причем, от ближайшего датчика.

Датчики есть везде и необходимо минимальное количество кабеля.

Так удобно поступать для управления лифтами, дверьми, эскалатором, музыкальной трансляцией – и другой слаботочной нагрузкой.

Но не у всех адресных систем в ассортименте есть адресное устройство, которое может коммутировать силовую нагрузку.

3. Промежуточное реле или УК-ВК.

Это самая любимая проектировщиками схема, поскольку беспроигрышная.

От установленных в одном месте адресных управляющих блоков с контролем целостности тянется сигнальная линия, забирающая в шлейф управления несколько реле типа “УК-ВК”.

Лишь бы хватило сечения кабеля, мощности управляющего выхода и был применен модуль подключения нагрузки при подключении каждого реле.

Логика работы всех управляемых устройств в один шлейф управления должна быть одинакова.

Например, не получиться одним выходом управлять и клапанами дымоудаления и вентилятором дымоудаления, поскольку клапан должен начать открываться раньше запуска вентилятора дымоудаления.

Проверяем работу устройства

Чтобы проверить работоспособность изделия потребуется собрать электрическую схему, включающую источник питания, нагрузку, предохранитель-автомат и реле. Для подачи питания используется трансформатор лабораторного типа ЛАТР, оснащенный рукояткой для плавной корректировки напряжения в диапазоне от 0 до 250 В. После программирования порогов срабатывания производится включение цепи питания, а затем выполняется понижение и повышение вольтажа. Для проверки значения параметра используется тестовый прибор, переключенный в режим вольтметра.

Онлайн журнал электрика

При проектировании и эксплуатации хоть какой электронной системы приходится считаться с возможностью появления в ней повреждений и ненормальных режимов работы, которые могут привести к появлению в системе аварий, сопровождающейся недоотпуском электроэнергии потребителям, недопустимым ухудшением ее свойства либо разрушением оборудования.

Предотвращение появления аварии либо ее развития нередко может быть обеспечено методом резвого отключения покоробленного элемента. По условиям обеспечения бесперебойной работы неповрежденной части системы время отключения покоробленного элемента должно быть маленьким и нередко составляет толики секунды.

Совсем разумеется, что человек обслуживающий установку, не в состоянии за настолько куцее время отметить появление повреждения и убрать его. Потому электронные установки снабжаются особыми электронными автоматами – реле защиты.

Предназначением релейной защиты является по способности скорейшее отключение покоробленного элемента либо участка энергосистемы от ее неповрежденных частей. Если повреждение не угрожает незамедлительным разрушением защищаемого объекта, не нарушает непрерывности электроснабжения и не представляет опасности по условиям техники безопасности, то устройства защиты могут действовать не на отключение, а на сигнал, предупреждающий дежурный персонал о неисправности.

Устройства релейной защиты должны действовать на сигнал либо отключение и в случае ненормальных режимом работы сети, если такие режимы могут представлять опасность для оборудования.

Требования к релейной защите

К релейной защите предъявляются последующие требования по селективности, чувствительности, быстродействию и надежности:

1) Селективность деяния (избирательность) – способность устройства релейной защиты срабатывать при повреждении в зоне его деяния и не срабатывать при наружных повреждениях и нагрузочных режимах, т.е. селективным именуется такое действие защиты, при котором она отключает только покоробленный элемент средством его автоматических выключателей. Все другие части системы должны при всем этом оставаться включенными.

Все устройства релейной защиты делятся на 2 класса по селективности:

— защиты с относительной селективностью – селективность обеспечивается выбором характеристик срабатывания. Сюда относятся максимальнотоковые и дистанционные защиты;

— защиты с абсолютной селективностью – селективность обеспечивается принципом деяния – все виды дифференциальных защит.

2) Чувствительность – способность устройства релейной защиты реагировать на малые значения аварийных характеристик.

К примеру, при появлении повреждения на линиях высочайшего напряжения, работающих в режиме малых нагрузок и огромных переходных сопротивлениях повреждения, токи недлинного замыкания могут быть наименьшими наибольших токов нагрузки. Это приводит к невозможности использования обыденных токовых защит и принуждает перебегать к более сложным и дорогим видам защит.

Чувствительность защит оценивается коэффициентом чувствительности. Для защит, реагирующих на растущие величины при появлении повреждения (для токовых – ток): k = Iкзмин / Iср, где: Iкзмин — величина тока при железном маленьком замыкании в защищаемой зоне; Iср — уставка по току срабатывания токовой защиты.

3) Быстродействие – определяется последующими соображениями:

— Ускорение отключения повреждения увеличивает устойчивость параллельной работы электронных машин в системе и, как следует, устраняется одна из главных обстоятельств появления более томных системных аварий.

— Ускорение отключения повреждения уменьшает время работы потребителей при пониженном напряжении, что позволит остаться в работе электродвигателям как у потребителей, так и на собственных нуждах электрических станций.

— Ускорение отключения повреждения уменьшает размер разрушений покоробленного элемента.

Потому для линий электропередачи 500 кВ быстродействие не должно быть ужаснее 20 мс, 750 кВ – 15 мс.

4) Надежность – способность устройства релейной защиты делать данные функции защиты в течение данного времени при данных критериях эксплуатации.

Школа для электрика

Схемы питания цепей сигнализации

Па подстанциях с постоянным оперативным током цепи сигнализации вместе с цепями управления защиты и автоматики получают питание от аккумуляторной батареи. Для повышения надежности питания потребителей на подстанции обычно имеются две секции и две системы шин постоянного тока. На крупных подстанциях устанавливаются две аккумуляторные батареи. В этом случае каждая из систем шин питается от отдельной батареи. Обе батареи работают раздельно. Если на подстанции установлена одна аккумуляторная батарея, то системы шин питаются от разных секций щита постоянного тока. Нормально обе секции замкнуты между собой с помощью секционного рубильника, а зарядный агрегат отключен. Возможна такая схема питания, когда одна из секций получает питание от аккумуляторной батареи, а вторая — от зарядного агрегата.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий