Грунтовый теплообменник своими руками – изготовление

Грунтовый теплообменник вентиляции в частном доме

Другие статьи на эту тему:

При устройстве вентиляции в частном доме все более популярным становится осуществлять воздухозабор свежего воздуха через грунтовый теплообменник.

Воздух в систему приточной вентиляции поступает с улицы через грунтовый теплообменник — трубу проложенную по участку в земле ниже глубины промерзания грунта.

На глубине 1,5 — 2 м. температура грунта остается постоянной круглый год — 8-10 °С.

Зимой, проходя по трубе теплообменника, приточный воздух нагревается до температуры, близкой к 0 °С.

Это снижает расход энергии на нагрев приточного воздуха, примерно на 25%, а в сильные морозы предотвращает выпадение инея на рекуператоре блока вентиляции, что перекрывает приток воздуха.

Летом воздух в трубе наоборот — охлаждается. Охлажденный воздух подается в помещения, снижая или вовсе исключая потребность в кондиционировании. Летом температура воздуха на выходе из теплообменника снижается максимум на 10-12 о С. при температуре наружного воздуха около 35 о С.

Для работы в этом режиме блок вентиляции с рекуператором должен иметь байпас, чтобы пропускать воздух помимо рекуператора.


мм.

Чем больше разница температур наружного воздуха и грунта, тем больше теплообмен. Грунтовый теплообменник работает не эффективно, если температура наружного воздуха находится в пределах +5 … +25 °С. Поэтому в межсезонье грунтовый теплообменник не используют. Забор воздуха происходит непосредственно с улицы, через воздухозаборник в стене дома.

Использование грунтового теплообменника наиболее выгодно для вентиляции достаточно герметичного воздухонепроницаемого дома, когда весь воздух поступает в дом только через трубу теплообменника.

Грунтовый теплообменник выгодно применять с любым блоком принудительной вентиляции, как с рекуператором, так и без него.

Грунтовый теплообменник в системе естественной вентиляции

В системе естественной вентиляции дома можно организовать приток воздуха через грунтовый теплообменник. Для этого, в трубу теплообменника на входе в дом достаточно установить канальный электровентилятор мощностью 100 — 200 Вт. и выполнить разводку труб приточной вентиляции диаметром 100 мм. в комнаты дома.

Удаление воздуха из дома будет осуществляться через вытяжные каналы естественной вентиляции. Приточная система с грунтовым теплообменником будет выполнять роль приточных клапанов.

Вентилятор лучше разместить в техническом помещении, чтобы снизить уровень шума от его работы.

Гидротермальная

В основе этого метода лежит использование природной воды. Из нее будет извлекаться необходимая тепловая энергия. Если в пределах досягаемости вашего дома находится озеро или водоем, тогда задача по установке оборудования значительно упрощается. Но это скорее исключение из правил, в большинстве случаев приходится бурить скважины до уровня грунтовых вод.

Принцип действия

Установку можно разбить на три составляющие:

  • внешний контур;
  • внутренняя разводка;
  • геотермальный насос.

Внешний контур представляет собой конструкцию труб, проложенную под землей на уровне подземных вод. Глубина их залегания должна быть ниже глубины промерзания. Внешний контур представляет собой отопительные коммуникации дома.

Принцип действия установки заключается в следующем. Тепло подземных вод передается теплоносителю внешнего контура. При помощи насоса он поступает в теплообменник. После чего осуществляется передача тепла на внутреннюю разводку. Всех сложностей монтажа можно избежать, если поблизости находится водоем. Теплообменник погружается в воду и подключается к отоплению. Площадь водоема должна быть не менее 200 м².

Преимущества устройства

Конструкция имеет следующие преимущества:

  • универсальность — система может работать не только как отопительная, но и охлаждающая;
  • низкий расход электроэнергии — она необходима только для питания насоса и составляет порядка 1 кВт в час;
  • пожарная безопасность обеспечивается за счет отсутствия процесса горения;
  • высокий коэффициент полезного действия — из 1 кВт электроэнергии выход составляет 5 кВт тепла;
  • простота эксплуатации и технического обслуживания.

Недостатком является высокая стоимость теплового насоса и монтаж оборудования. Для дома площадью 100 м² и потребляемой мощности 5 кВт*ч, монтаж отопительной системы составит примерно 440 тыс. рублей. Этот расчет берется для домов, находящихся в радиусе 50 метров от водоема, в который будет погружаться теплообменник.

Типы воздушных теплообменников, классификация и рабочие среды

Воздушные теплообменники применяются для охлаждения газов и жидкостей, а также для конденсации газо-жидкостных и парожидкостных сред. Они классифицируются как аппараты поверхностного теплообмена и полностью исключают смешение сред (замкнутый цикл теплоносителя).

В категорию воздушных теплообменников входят:

  • Воздухоохладители
  • Конденсаторы
  • Калориферы
  • Испарители
  • Рекуператоры
  • Радиаторы
  • Паровые нагреватели
  • Драйкулеры.

Устройство теплообменников зависит от характера рабочей среды. Различают основные типы теплообмена:

  • Воздух – воздух
  • Воздух – пар
  • Воздух – жидкость
  • Воздух – фреон
  • Воздух – масло

Теплообменники «воздух-воздух»

Основная сфера применения теплообменников типа «воздух-воздух» – климатическое оборудование: рекуперативные установки обеспечивают передачу тепла от вытяжного воздуха к потоку воздуха приточного.

Теплообменники «воздух-пар»

Воздушные теплообменники для конденсации пара широко применяются в электроэнергетике и промышленных системах парогенерации (котельные установки, газовые и электрические парогенераторы). Отработанный пар

Теплообменники «воздух-жидкость»

В роли охлаждаемой жидкости в воздушном пластинчатом теплообменнике может выступать вода, водные растворы этилен- и пропиленгликоля, соляной раствор, продукт технологической переработки или другая вязкая среда.

Жидкость проходит через секционные теплообменники (трубы с оребрением), которые обдуваются потоком воздуха от вентиляторов), в результате чего ее температура снижается.

Конструкции теплообменников подобного типа различаются в зависимости от направления расположения секций на вертикальные, горизонтальные и V-образные.

Для охлаждения жидкостей повышенной вязкости используются секции с трубками увеличенного сечения, для охлаждения агрессивных сред и работы в неблагоприятных условиях применяются теплообменники из нержавеющей стали с более низким коэффициентом теплопроводности и более высокой сопротивляемостью к коррозии.

Теплообменники «воздух-фреон»

Теплообменники данного типа применяются в системах промышленного и бытового кондиционирования. Климатическое оборудование внутри помещений выполняет теплообмен между жидкой фазой хладагента и воздухом, в результате чего воздух охлаждается, а фреон переходит в газообразное состояние (испаритель).

Затем хладагент по системе труб выводится из здания, и во внешнем теплообменнике происходит утилизация тепла в атмосферу с переходом фреона в жидкое состояние (конденсатор).

Теплообменники «воздух-масло»

Основные сферы применения теплообменников данного типа (для охлаждения) – промышленность и автомобилестроение. Масло в данном случае выполняет роль смазки для движущихся деталей станков и двигателей. Нагретое масло выводится в теплообменник, где охлаждается до приемлемых температур и возвращается обратно в систему.

Наиболее популярные типы конструкций – масляные радиаторы и маслоохладители (для трансформаторного масла).

Что такое теплообменник (змеевик)

Теплообменник — это главный элемент отопительного котла. Именно в теплообменнике вода нагревается до нужных температур, после чего тепло отбирается в помещение, через радиаторы отопления или другие приборы.

В процессе эксплуатации на теплообменник воздействуют высокие температуры, поэтому материалы его изготовления должны отвечать ряду определенных требований:

  • Первое и самое главное, теплообменник не должен подвергаться коррозии;
  • Материалы изготовления теплообменника должны хорошо передавать тепло;
  • Теплообменник должен быть стойким к ударам и повреждениям.

В большинстве случаев при изготовлении самодельных котлов отопления используют металлические трубы или куски сваренного друг с другом швеллера. Однако это далеко не все решения, поскольку в качестве теплообменника можно приспособить, например, чугунные батареи.

Конструкция и принцип работы теплового насоса

Конструкция системы с тепловым насосом земля-вода:

  • Земляной зонд или коллектор;
  • Теплообменник, который транспортирует тепловую энергию к внутреннему контуру;
  • Компрессор;
  • Теплообменник, который передает тепловую энергию в систему отопления;
  • Система отопления и горячего водоснабжения внутри дома.

Система грунтового теплового насоса имеет в своей схеме 3 контура. Внешний контур находится в земле, собирая там тепловую энергию. Второй контур – это сам тепловой насос, теплоноситель попадает в испаритель, где температура поднимается. А третий контур – это уже непосредственно система отопления в доме, в которой циркулирует вода.

За 1 час циркулирует 2-3 м3 теплоносителя. Этот теплоноситель нагревается в земле на 5-70С. Земляной зонд теплового насоса грунт вода, то есть теплообменник, который закопан на определенную глубину, собирает тепловую энергию. И с помощью теплоносителя эта энергия переносится в тепловой насос, а именно в испаритель. Теплоносителем может быть антифриз или смесь воды и пропиленгликоля или этиленгликоля. Часто в системе циркулирует фреон (хладагент) в жидком состоянии, который в испарителе сжимается и превращается в газ. Особенностью фреона является то, что он закипает при низкой температуре. Когда он закипает, то расширяется и пары, которые образуются, попадают в конденсатор.

Далее это тепло попадает к другому теплообменнику, в котором циркулирует уже вода для системы отопления дома. После того как фреон остыл, он обратно преобразуется в жидкое состояние, и циркулирует в грунтовой теплообменник. Процесс начинается заново.

Внешний теплообменник устройства грунт вода выглядит как полиетиленовая тонкостенная труба, ее диаметр может быть 4 см. Приблизительный расчет длины змеевика, который закапывается, такой: 5 погонных метров трубы соответствует 1 м2 площади дома. Можно сделать вывод, что если площадь дома 150 м2, то длина змеевика должна быть 750 метров погонных.

Как выбрать

Выбор подходящего теплообменника основан на анализе конструкции имеющейся (или строящейся) печи. Если нужен небольшой встроенный бак, надо сначала найти порядовку, рассчитанную на установку дополнительных емкостей.

Если планируется монтаж на дымоход, надо выбирать модель одинакового диаметра. Это важный момент, так как использование переходников здесь крайне нежелательно. Кроме того, важен объем емкости — если он слишком мал, вода может закипеть. Если слишком велик — нагрев будет продолжаться слишком долго, особенно, если внешний накопитель достаточно велик.

Варианты подключения

Еще одним важным моментом станет стоимость теплообменника. Рекомендуется отдавать предпочтение отечественным моделям — они на порядок дешевле, а изготовлены из металла лучшего качества.

Эффективность

Использование грунтово-воздушных теплообменников как для частичного, так и для полного охлаждения и/или нагревания воздуха, вентилируемого в помещении, проходило с переменным успехом. К сожалению, литература переполнена чрезмерными обобщениями о «плюсах» и «минусах» применимости этих систем. Ключевым аспектом грунтово-воздушных теплообменников является пассивная природа работы и возможность применения в широком спектре природных условий.

Грунтово-воздушные теплообменники могут быть крайне рентабельными как в отношении предварительных, так и капитальных затрат, а также долговечными и дешевыми в обслуживании. Однако это сильно зависит от широты местности, высоты над уровнем моря, температуры окружающей среды, максимумов климатической температуры и относительной влажности, солнечной радиации, уровня воды, типа почвы (теплопроводности), содержания влажности в почве и внешнего проектирования системы или ее изоляции. В основном сухая почва с низкой плотностью, малым количеством или полностью отсутствующим слоем грунта может принести меньше всего выгод, хотя плотная влажная почва со значительным слоем грунта должно улучшить характеристики системы.

Система замедленного дренажа конденсата может улучшить тепловые характеристики. Влажная почва в контакте с охлаждающими трубами будет проводить тепло гораздо эффективнее, чем сухая почва.

Подземные охлаждающие трубы гораздо менее эффективны в жарком влажном климате (как во Флориде), где температура окружающей среды приближается к комфортной для людей температуре. Чем выше температура окружающей среды, тем менее эффективна система для охлаждения и осушения воздуха. Однако, почва может использоваться для частичного охлаждения и осушения заменяемого воздуха, поступающего в термическую буферную зону с пассивной солнечной подпиткой, например, в прачечной или террасе/теплице, особенно – в тех зонах, где есть купель, плавательная спа-зона или внутренний плавательный бассейн, где теплый влажный воздух извлекается летом, и требуется более холодный и сухой компенсационный воздух.

Не для всех регионов и мест пригодны грунтово-воздушные теплообменники. Среди условий, которые могут препятствовать правильному использованию систем – поверхностная скальная порода, высокий уровень воды и неподходящее пространство. В частности, в некоторых районах должна быть обеспечена тепловая перезарядка почвы. В бифункциональных системах (как нагревания, так и охлаждения) теплое время года обеспечивает тепловую перезарядку почвы для холодного сезона, а холодный сезон обеспечивает тепловую перезарядку почвы для теплого сезона, хотя даже для них стоит предусматривать вариант перегрузки теплового резервуара.

«Renata Limited» — выдающаяся фармацевтическая компания в Бангладеш проверила пилотный проект, пытающийся обнаружить, можно ли использовать туннельный грунтово-воздушный теплообменник в качестве дополнения к традиционной системе кондиционирования воздуха. Бетонные трубы с общей длиной в 60 футов (около 18,25 м), внутренним диаметром в 9 дюймов (около 23 см) и внешним диаметром в 11 дюймов (около 28 см) были закопаны на глубине в 9 футов (около 2,75 м) под землей, использовался вентилятор с расчетной мощностью 1,5 кВт.

Подземная температура на глубине оставалась на уровне в 28 C. Средняя скорость движения воздуха в туннеле составляла около 5 м/с. КПД подземного теплообменника, созданного таким образом, было малым и составляло от 1,5 до 3 ед. Результаты убедили власти, что в жарком и влажном климате неблагоразумно воплощать на практике концепт грунтово-воздушного теплообменника. Вторичный холодоноситель (сам грунт) изменяет температуру окружающей среды, что является главной причиной провала подобных принципов в жарких, влажных регионах (части Юго-Восточной Азии, американский штат Флорида и так далее).

Однако исследователи из Британии и Турции докладывали о чрезвычайно высоком КПД, превышающем 20 единиц. Температура под землей кажется самым важным показателем для проектирования грунтово-воздушного теплообменника.

Принцип работы теплонасосной системы теплоснабжения

В испарителе теплового насоса тепло невысокого температурного потенциала отбирается от источника низкотемпературного тепла и передается низкокипящему рабочему телу теплового насоса (рис. 6). Полученный пар сжимается компрессором. При этом температура пара повышается и тепло на нужном температурном уровне в конденсаторе передается в систему отопления и/или горячего водоснабжения. Для того чтобы замкнуть цикл, совершаемый рабочим телом, после конденсатора оно дросселируется до начального давления, охлаждаясь до температуры ниже источника низкопотенциального тепла, и снова подается в испаритель.

Рис. 6. Схема работы системы теплоснабжения на основе теплового насоса

Точка кипения для разных жидкостей меняется посредством давления, чем выше давление, тем выше точка кипения. Вода закипает при нормальном давлении при температуре +100 °С. При повышении давления вдвое температура кипения воды достигает +120 °С, а при уменьшении давления в 2 раза вода закипает при +80 °С. Хладагент в тепловом насосе имеет ту же тенденцию: его температура кипения меняется при изменении давления. Точка кипения хладагента лежит низко, приблизительно – 40 °С при атмосферном давлении, поэтому может использоваться даже с низкотемпературным тепловым источником.

Таким образом, тепловой насос осуществляет трансформацию тепловой энергии с низкого температурного уровня на более высокий, необходимый потребителю. При этом на привод компрессора затрачивается электрическая энергия. Однако при наличии подходящего источника низкопотенциального тепла его количество, поставляемое потребителю, в несколько раз превышает затраты на привод компрессора. Отношение полезного тепла к работе компрессора называется коэффициентом преобразования теплового насоса, и в наиболее распространенных теплонасосных системах он достигает величины 3 и более. Температурный уровень теплоснабжения от тепловых насосов – 35–60 °С.

Экономия дорогих энергетических ресурсов при таком температурном режиме достигает 75 %.

Теоретический коэффициент преобразования (ε) идеального теплового насоса рассчитывается по формуле Карно:

ε = Т2/( Т21),

21

Если бы тепловой насос работал по идеальному циклу, то при температуре кипения +5 °С (Т1 = 278 К) и при температуре конденсации 55 °С (Т2=328 К) он мог бы работать с коэффициентом преобразования, равным 6,56. На самом деле коэффициент преобразования будет меньше, так как полностью идеальных тепловых машин не бывает.

Обычно внутри теплового насоса, как и в холодильнике, циркулирует хладагент. На современное этапе используются хладагенты, который не содержат хлоруглеводородов и других, вредных для здоровья человека и окружающей среды компонентов.

Плюсы и минусы

Системы ВО отно­сительно мало распространены в жилом секторе нашей страны, и на них до сих пор смотрят как на экзотику. Как пра­вило, система ВО требует проведения пусконаладочных работ «по воздуху» и «по системе автоматики», которые мо­гут сделать только подготовленные спе­циалисты, имеющие соответствующие приборы и инструменты.

Ошибки при проектировании системы и её монтаже могут привести к повышенному уровню шума в помещениях, дисбалансу пода­чи воздуха по помещениям и, как след­ствие — дисбалансу по температуре.

Воздуховоды, кроме того, занимают определённый объём и поэтому очень важно, чтобы это было учтено на этапе проектирования дома. При грамотном подходе практически все воздухово­ды удаётся спрятать так, что полезный объём дома почти не уменьшается. При проектировании системы воздухо­водов важно иметь дизайн-проект расста­новки мебели и бытового оборудования

Крайне нежелательно, чтобы подающие вентиляционные решётки находились в зо­не долговременного пребывания людей

При проектировании системы воздухо­водов важно иметь дизайн-проект расста­новки мебели и бытового оборудования. Крайне нежелательно, чтобы подающие вентиляционные решётки находились в зо­не долговременного пребывания людей. Система ВО — электрозависима, по­этому в доме желательно иметь систему резервного электроснабжения и систе­му резервного отопления (к примеру камин промышленного изготовления)

Система ВО — электрозависима, по­этому в доме желательно иметь систему резервного электроснабжения и систе­му резервного отопления (к примеру камин промышленного изготовления).

Всё вышеперечисленное можно отне­сти к минусам системы ВО. Но есть у неё и неоспоримые преимущества по срав­нению с конвекционными системами.

Главным преимуществом этой систе­мы является возможность совмещения в одной системе отопления и вентиля­ции. Нужно сказать, что необходимость устройства вентиляции в наших домах, построенных по энергосберегающим технологиям и оснащённых современны­ми герметичными окнами и дверями, всё больше и больше осознаётся застройщи­ками. Отсутствие нормальной приточно-вытяжной вентиляции может привести к накоплению влаги в стенах и появлению плесени. А воздушная система, выполня­ющая сразу функции отопления и венти­ляции, обойдётся дешевле, чем две спе­циализированные системы.

В системе ВО обязательно устанавлива­ют фильтры. Они бывают нескольких типов: обычный механический, который удаля­ет частицы пыли до 0,3 мкм; электронный фильтр — удаляет частицы пыли размером до 0,01 мкм; угольный фильтр — удаляет неприятные запахи. Через электронный фильтр, к примеру, не проходит пыльца растений и табачный дым, а обслуживание его сводится к периодической промывке под струёй воды.

Рисунок 6. Схема размещения системы воздушного отопления: 1 — теплообменник; 2 — подающие воздуховоды; 3 — возвратные воздуховоды; 4 — забор свежего воздуха; 5 — рекуператор; 6 — дымоход.

В системе возвратных воздуховодов в простейшем случае предусматривает­ся рукав, забирающий воздух с улицы и подмешивающий его к внутреннему воз­духу (рисунок 6). Эта смесь воздуха, пройдя через фильтр и теплообменник, нагревается и равномерно распределяется по всем помещениям. Проблема открытых фор­точек и сквозняков при этом снимается. Форточки просто не открывают, а в доме создается небольшое избыточное дав­ление, что препятствует проникновению в помещения «забортного» воздуха и создаёт условия для лучшей вентиляции «грязных» помещений.

При работе ВО на нижнем этаже до­ма основная часть воздуха забирается снизу, а на верхнем этаже — с потол­ка. Тем самым обеспечивается вырав­нивание температуры воздуха по всему объёму отапливаемых помещений.

В систему воздуховодов, кроме то­го, может быть установлен канальный увлажнитель воздуха, обеспечивающий контролируемую влажность в доме, и кондиционер, который поддержит ком­фортную температуру в жаркие месяцы. Можно установить и ультрафиолетовый стерилизатор воздуха, который включа­ется для профилактики инфекционных заболеваний или в случае, если кто-то из домашних заболел.

Водовоздушные теплообменники в Москве

Теплообменник нерж.сталь Pahlen Maxi-Flo 40 кВт

Теплообменник нерж.сталь Pahlen Maxi-Flo 40 кВт

Теплообменник (вода системы отопления) (VC-W 240 — 242) для котлов Vaillant (Вайлант) арт.: 061836

Теплообменник 60 кВт (вертикальный) Xenozone Вертикальный теплообменник

Теплообменник трубчатый Idrania, вода/вода, 20 кВт, AISI-316L

Теплообменник XenoZone 13 кВт горизонтальный (Теплообменники XenoZone)

Теплообменник Pahlen Hi-Flow 13 кВт (Теплообменники Pahlen)

Водяной калорифер КСк2-1 02ХЛЗМ

Теплообменники Stiebel Eltron WTW 28/18 (вода-вода) для SB 602‑1002 АС

Теплообменник нерж.сталь Pahlen Maxi-Flo 75 кВт

Теплообменники серии E060 — 24

Теплообменник нерж.сталь Max Dapra D-HWT 24

Huch EnTEC Теплообменник до 30 кВт

Теплообменник дымовые газы/вода PR 20-323047 для котлов Thermona (Термона) арт.: 20405

Пластинчатый теплообменник из 20 пластин

Теплообменник нерж.сталь Аквасектор 40 кВт (трубчатый)

Теплообменник нерж.сталь Behncke QWT 100-30, 30 кВт (1 1/2″ — 3/4″)

Теплообменник elecro g2i he 30 квт (incoloy)

Теплообменник нерж.сталь Pahlen Maxi-Flo 75 кВт вертикальный

Паяный теплообменник 23 кВт

Теплообменник дымовые газы/вода PR 12-3230003 для котлов Thermona (Термона) арт.: 20400

Теплообменник нерж.сталь Pahlen Maxi-Flo 120 кВт

Теплообменник AISI 304 13 кВт

Теплообменник Aquaviva HE 60 кВт

Теплообменник дымовые газы/вода PR 30-323 для котлов Thermona (Термона) арт.: 24528

Теплообменник скоростной вторичный (ГВС) Bosch (87054062030)

Теплообменник для бойлеров косвенного нагрева 9Bar V 3,0

запчасть для котла Baxi Патрубок выхода воды гвс из вторичного теплообменника 5683630

Пластинчатый теплообменник AstralPool ETNA-160 вода/вода из AISI-316, 160000 Ккал/ч AstralPool Etna Steel

Теплообменник Pahlen Hi-Flow 28 кВт (Теплообменники Pahlen)

Пластинчатый теплообменник из 36 пластин

Теплообменник Baxi Вторичный теплообменник для горячей воды для котла Eco Four 24, 24 F, арт. 711612600

Теплообменник отопления 350-400СД(147)

Теплообменник Сибтермо 2,5 кВт с горелкой

Теплообменник трубчатый Idrania, вода/вода, 57 кВт, титан

Оборудованный пластинчатый теплообменник ETNA-60 вода/вода из стали AISI-316 + рециркуляционный насос, 60000 Ккал/ч AstralPool Etna Steel оборудованный с насосом

Теплообменник 13 кВт Xenozone Арт. ТО 13.1, нержавеющая сталь в комплекте со вставками из нерж.стали д.50х1 1/2″

Источник

Теплообменник для вентиляции водяной

Теплообменник для вентиляции используется для регулировки температуры воздуха, который втягивается в помещение из улицы. Воздух может нагреваться или охлаждаться, проходя через специальный прибор. Большим спросом пользуется теплообменник для вентиляции водяной, который прост в эксплуатации, экономичен и обеспечивает нормальные условия проживания в доме.

Виды теплообменников

В зависимости от способа стабилизации температуры различают четыре вида устройств:

  • Водяной. Для выработки тепла используется вода из системы отопления или специального прибора – калорифера;
  • Электрический. Для выработки тепла используется сеть электроэнергии в доме;
  • Грунтовый. Для выработки тепла или холода используется природная температура земли;
  • Рекуператор. Для выработки тепла используются выходящие из дома газы.

Грунтовые устройства могут быть канальными или бесканальными. Канальные устройства являют собой комплекс подземных труб, которые втягивают воздух. Бесканальные устройства подразумевают прохождение воздуха через специальную нишу под землей. Традиционно используют гравий, который способен долго сохранять стабильную температуру. Теплообменник для вентиляции водяной и подземный канальный являются наиболее распространенными на территории России и стран СНГ.

Особенности водяного теплообменника

В водяных устройствах может быть от двух до четырех рядов для приточной вентиляции. Чем больше рядов в системе, тем лучше стабилизируется температура, из-за большей площади стенок, к которым соприкасается втягиваемый воздух. Но в четырехрядных теплообменниках меньше места для отопительной воды. Поэтому можно увеличить размер смесителя.

Недостатком водяных устройств является невозможность регулировки температуры втягиваемого воздуха. Подогрев воздушного потока напрямую зависит от нагрева системы отопления или калорифера. Для того, чтобы была возможность регулировать температуру воздуха, используют трехходовой кран.

Регулировка температуры трехходовым краном

Трехходовый смеситель направляет жидкость по малому или большому кругу. Кран может работать в трех режимах:

  • Рециркуляция (большой круг);
  • Циркуляция без смешивания (малый круг);
  • Смешивание пополам.

Если большой круг достаточно прогрелся, систему можно остановить. Это указанно на инструкциях приборов. При нагретом помещении циркуляция происходит по малому кругу. Площадь теплоотдачи значительно уменьшается, что уменьшает интенсивность прогрева.

Трехходовые краны можно купить двух видов:

  • Механический (ручной). Регулировка круга проводимости жидкости производится переключением рычага;
  • Автоматический (с сервоприводом). Поток жидкости проходит через сервопривод, который меняет направление теплоносителя пультом, работающим от стандартной сети электропитания 220В.

В кране с сервоприводом задается температура, и устройство автоматически регулирует нагрев жидкости и воздуха в системе. Все большую популярность набирают теплообменники для вентиляции водяные, отечественного производства. На них также можно установить отечественные краны.

Проблемы в работе водяных теплообменников

Водяные теплообменники являются довольно уязвимыми элементом системы вентиляции. Большой проблемой является поломка калорифера. Он может выйти из строя, если:

  • Температура воздуха на улице значительно ниже нуля. В таком случае калорифер замерзает и не может полноценно нагревать жидкость;
  • Неправильная эксплуатация. Нельзя часто менять путь жидкости в системе;
  • Система была подключена неправильно. Утечка воздуха или жидкости непременно приведет к поломке.

Установку теплообменника лучше доверить профессионалам. Монтаж элементов системы – дело не для новичка. Чтобы система работала бесперебойно, автоматика и защита должны быть настроены правильно.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий