Лампа дневного света

Дроссели и их назначение при использовании люминесцентных ламп

Дроссель — деталь, служащая для регулировки силы тока. Эта деталь разделяет или ограничивает электросигналы различной частоты и устраняет пульсацию постоянного тока.

Для чего и зачем нужен в устройствах дневного света

Люминесцентные лампы (дневного света) как один из видов разрядных ламп, невозможно подключить для освещения таким же образом, как и обычную нагревательную электролампу. Для их подключения необходимо использовать дополнительный пускорегулирующий аппарат.

Дроссель включается методом последовательного соединения с лампой дневного света и предназначается для ограничения тока, который протекает через ее электроды. Это устройство характеризуется наличием реактивного сопротивления, а также отсутствием излишнего тепловыделения. Дроссель может ограничить ток и организовать предотвращение его лавинообразного нарастания при включении в сеть.

Дроссель — неотъемлемая составная часть любой стартерной системы включения. Помимо этого, он способен исполнять следующие дополнительные функции:

  • создание безопасного тока для конкретной лампы, при котором возможно обеспечение разогрева ее электродов при разжигании;
  • образование импульса повышенного напряжения, способствующего возникновению разряда в колбе лампы;
  • обеспечение стабилизации электрического разряда;
  • способствование бесперебойной работы лампы при отклонениях напряжения в электрической сети.

Технические характеристики

Основными техническими характеристиками рассматриваемой детали являются коэффициент потери мощности и индуктивность. Для обозначения этого коэффициента на устройстве указываются параметры тока, мощности и емкости конденсатора.

Индуктивностью называется индуктивное сопротивление, которое представляет возможным регулировать мощность электричества, поступающего на ламповые контакты.

Виды

Дроссели делятся на те же виды, что и подключаемые к ним лампы. Если подключить лампу к дросселю, который не соответствует ее характеристикам, то это, вероятнее всего, приведет к поломке какого-либо из элементов, используемых в системе подключения. Существуют следующие виды дросселей, подразделяемых в зависимости от мощности:

  • дроссель мощностью в 9 Вт — для энергосберегающих ламп;
  • 11 Вт — для миниатюрных светильников;
  • 15 Вт — для настольных светильников;
  • 18 Вт — для офисных ламп;
  • 36 Вт — для малых люминесцентных ламп;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых потолочных светильников;
  • 80 Вт — для большых люминесцентных ламп.

Устройство

Типичная схема подключения дросселя газоразрядного типа представлена на рисунке ниже.

Условные обозначения:

  • EL — лампа;
  • SF — стартер;
  • LL — дроссель;
  • 1, 2 — спирали лампы;
  • C — конденсатор.

Отчего может греться

Дроссели чаще всего изготавливают из двух металлических материалов — алюминия и меди. Алюминиевые устройства обладают одним существенным недостатком — сильным нагреванием. В свою очередь, медные греются меньше из-за меньшего сопротивления в электрической цепи, и поэтому они являются гораздо более долговечными.

При использовании ламп дневного света дроссель должен постоянно поддерживать свою рабочую температуру. Для снижения температуры достаточно использовать простой компьютерный кулер. Однако, существует возможность выбрать и другой путь, заключающийся в покупке более дорогой системы охлаждения, например, водяной.

Помимо самой работы дросселя, он также способен перегреваться из-за короткозамкнутых витков. При такой проблеме помочь может только полная замена устройства. При замене рекомендуется выбрать детали из меди, основываясь на том, что они менее подвержены перегреву.

Практика показывает, что дроссели являются весьма долговечными устройствами при правильной их эксплуатации. А также нельзя не отметить тот факт, что дроссель способен погашать броски напряжения, даже очень сильные. Поэтому, если вы правильно подберете дроссель к своей люминесцентной лампе, то эта лампа может прослужить вам годами, и даже десятилетиями.

15,00

Основы классификации люминесцентных ламп

Для применения ЛЛ используют маркировку, которая нанесена на колбе и на металлических частях ламп. Если понимать, что там написано, вопроса как выбрать не появится, и электропроводка в квартире не пострадает. Итак, что мы прочитаем на лампе:

Первая буква это Л – люминесцентная. Следующая буква это спектр. Б – белый, Д – дневной свет и У – универсальная. Например, ЛБ

Диаметр колбы . Это параметр, прямо связанный со светимостью, спектром и длительностью эксплуатации. Чем «толще» лампа, тем дольше она прослужит (хотя падение светового потока со временем неизбежно). Международный стандарт принял единицу диаметра как часть дюйма – 1/8. Наиболее распространены лампы с диаметром колбы 18, 26 и 38 мм. Обозначение размера Т. Например Т8 это 26 мм. ЛБ Т8. Габариты могут быть приведены как цифры, например 26/604 – тогда это диаметр и длина в миллиметрах.

Мощность . Это характеристика, которая позволит понять, какое помещение мы сможем осветить одной лампой, или, сколько ламп накаливания заменит одна ЛЛ. Обозначение W. Цифра означает мощность, а как это связано со светимостью и КПД, можно почитать тут . Например, w12. Итого имеем ЛБ Т8 w8.
Физические характеристики цоколя и их количество (FS один, FD два, FB компактная лампа со встроенным в цоколь ЭПРА) обозначают стандартной международной маркировкой, например FS G13. Мы уже начинаем понимать, о какой лампе идёт речь — ЛБ Т8 w8 FS G13.
Необходимость стартёра или возможность включения в схему с балластом, без пусковой аппаратуры. (Есть неправильное мнение, что лампы RS «rapid start» . не требующие стартёра более экономичные – они просто растягивают во времени потребляемую для старта энергию). Сюда же отнесём маркировку других типов старта – InS — instant start . универсальный пуск US. Лампы, которым нужен стартёр, будут промаркированы PHs — pre-heat start

Обратим Ваше внимание на то, что согласно стандартам, данное обозначение может отсутствовать, а значит, если у лампы нет указания на плавный старт, то стартёр обязательный элемент, раз таково устройство люминесцентной лампы. А значит, лампа может быть такой — ЛБ Т8 w8 FS G13 RS.
Следующий параметр – напряжение сети. которое может быть 220 или 127 вольт, это указывается именно так – 127 В

Или 220 В.
Ещё одно обозначение – форма колбы. Линейная форма не обозначается, а вот подковообразная (дуга) имеет маркировку U. Например, 4U – четырёхдуговая. S –спираль, С – свеча, G – шарообразная, R – рефлекторного вида и Т – в виде таблетки. Обратите внимание – аналогичная структура применяется в маркировке энергосберегающих ламп. Для стандартных ламп дневного света такие обозначения редкость.

которое может быть 220 или 127 вольт, это указывается именно так – 127 В. Или 220 В.
Ещё одно обозначение – форма колбы . Линейная форма не обозначается, а вот подковообразная (дуга) имеет маркировку U . Например, 4U – четырёхдуговая. S –спираль, С – свеча, G – шарообразная, R – рефлекторного вида и Т – в виде таблетки

Обратите внимание – аналогичная структура применяется в маркировке энергосберегающих ламп. Для стандартных ламп дневного света такие обозначения редкость.

Это основные типы люминесцентных ламп, характеристики которых можно узнать по маркировке типа — ЛБ Т8 w8 FS G13 RS 220 В. 2U . Порядок символов может меняться у разных производителей, но эти основные данные будут в наличии на любой лампе. Возможно, будет указан спектр, и светимость, тогда Вы обнаружите цифры. Чем больше цифра, тем ярче лампа и выше светимость. Например, ЛДС 2-40 . Или европейское обозначение Color/EW

Обратим Ваше внимание – это не спектральная характеристика, именно цвет свечения! Обычно он задаётся внешней окраской колбы лампы

Температура света будет указана в Кельвинах (2700 это 27 в маркировке). То есть, обнаружив на лампе маркировку «742» мы знаем, что это индекс цветопередачи в 70 Ra и цветовая температура 4200 К . то есть «холодный свет». Подробнее о спектрах и параметрах светимости можно почитать в нашей статье про расчет освещения .

Таким образом, полная маркировка типа люминесцентных ламп может выглядеть так: ЛБ Т8 w8 FS G13 RS 220 В. G Color/(код цвета) 742 .

В указанной маркировке есть совпадения латинских обозначений, поэтому первую G(5),тип цоколя не путаем со второй G – формой колбы! Таким же образом разделяем другие совпадения – по месту нахождения символа в маркировке, что относится к питанию люминесцентных ламп и характеристикам светимости.

Производители не имеют общего стандарта маркировки, рассмотренный пример позволяет понять все характеристики, как правило, любой приведённый параметр находится именно на этом месте, если обозначение другое, то будет пробел, например FS-8-G13-26/604-742 .

Как работает лампа

Принцип работы любой люминесцентной лампы включает в себя подачу напряжения на расположенные внутри колбы электроды. Между электродами возникает тлеющий разряд, который поддерживается находящимся внутри колбы инертным газом или парами ртути.


Рисунок 7. Принцип работы

Тлеющий разряд порождает излучение в ультрафиолетовом диапазоне, которое через нанесенный на колбу люминофор превращается в видимый свет нужного оттенка.

Чтобы получить ультрафиолетовое излучение, используются газоразрядные лампы. Обычное стекло ультрафиолет не пропускает, поэтому для изготовления колбы используется специальное кварцевое стекло. Люминофорное покрытие в данном случае отсутствует. Приборы широко используются в соляриях и при обеззараживании помещений.

Классификация люминесцентных ламп

Для классификации и выделения технических характеристик ЛЛ необходимо определить их работоспособность, а так же понять, какова их конструкция. Для этого целесообразно:

Определить свет, который излучается лампой. Он может быть обычным белым или дневным. Усовершенствованные модели возможны в универсальном исполнении.
Узнать поперечную ширину трубки. Чем больше этот показатель, тем мощнее будет ЛДС, а также будут выше данные по температуре цвета, спектру и сроку службы. Наиболее распространены и эффективны колбы на 18, 26 и 38 мм. Данные диаметра и длины трубки обычно маркируют рядом, к примеру, 26/406.
Посмотреть на такие показатели, как мощность ламп. На основе этих показателей возможно определение площади, освещаемой прибором. Также от этого параметра зависит и КПД.
Узнать, сколько контактов имеет ЛЛ. Их может быть четыре, может два при скрученной в кольцо лампе.
Определить, требуется ли для розжига люминесцентной лампы стартер и дроссель, или ЛЛ является бесстартерной. Некоторые думают, что если стартер не требуется, прибор будет более экономичным. Но это заблуждение, никакой связи между наличием либо отсутствием прерывателя и энергосберегаемостью нет.
Учесть номинал необходимого питания. Есть лампы, работающие не от 220 В, а от 127 В.
Посмотреть на форму лампы

Она может быть в форме кольца, U-образной, прямой, спиралевидной, шарообразной или дуговой.
Обратить внимание на долговечность работы. Она зависит от того, где должна быть применена данная лампа

Наиболее долговечны ЛЛ, предназначенные для дома.
Визуально понять цвет лампы. Является она ЛДЦ или ЛБ.

Принцип работы люминесцентной лампы

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно написано здесь.

Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы ртутной лампочки. Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и газоразрядных лампочек, с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.

Индекс цветопередачи

Индекс цветопередачи показывает, насколько хорошо по сравнению с солнечным светом (или светом специальной эталонной лампы) воспроизводится в данном свете цвета предметов. Наилучший индекс цветопередачи равен 100 и присущ, например, свету галогенных ламп.

Цветовая температура белого света указывает на температуру по шкале Кельвина (сокращение — К), до которой следует разогреть черное твердое тело, чтобы оно начало излучать белый свет того же оттенка. Кстати, ноль температуры по шкале Кельвина соответствует -273 °С.

Чаще всего два вышеназванных параметра используются при оценке качества света именно люминесцентных ламп. Дело в том, что их свет фактически является флюоресценцией, возникающей под действием ультрафиолетовых лучей, которые генерируются электрическим разрядом в лампе. Светится особое вещество — люминофор, покрывающий изнутри колбу лампы. В отличие от ламп, где источником света является раскаленная вольфрамовая спираль, в спектре люминесцентных ламп те или иные цвета могут быть представлены очень неравномерно. Вот почему свет люминесцентных ламп бывает разных оттенков, а цвет предметов в этом свете может существенно отличаться от привычного.

Компактные люминесцентные лампы стандарта E-14

Технические особенности КЛЛ

Данный вид ламп подразделяется на три категории:

  1. С трубкой П-образной или Н-образной формы, стартером внутри и внешней пускорегулирующей аппаратурой. (1)
  2. С изогнутой трубкой, встроенными стартером и пускорегулирующей микросхемой. (2)
  3. С трубкой в форме кольца, встроенными стартером и пускорегулирующей аппаратурой. (3)

Указанные виды компактных ламп обладают следующими особенностями:

  1. Напряжение: 5-35 W.
  2. Световой поток:
    • 400-900 Лм (1),
  3. 425-1200 Лм (2),
  4. 700-1450 Лм (2).
  5. Индекс цветопередачи: 60-98 Ra.

Домашнему мастеру не обязательно идти в магазин за приобретениями всех нужных для работ инструментов, многие из них собираются своими руками. Как, например, штроборез — из болгарки. Или сварочный инвертор, при изготовлении которого может понадобится много ранее ненужных деталей.

Устройство и принцип работы ламп

Согласно истории люминесцентной лампы, первое осветительное устройство газоразрядного типа было сконструировано в 1856 г. Г. Гейслером. Конструкция приборов усовершенствовалась. Лампы дневного света в массовое коммерческое использование поступили в конце 30 г. XX в.

Конструкция относится к газоразрядным источникам освещения, сконструирована с использованием трубки из стекла, которая с двух сторон запаяна. Изнутри на поверхности лампы нанесен слой специального вещества (люминофора). Устройство излучает рассеивающий свет после подключения к источнику электропитания. Изнутри колбу наполняют аргоном.

Люминесцентное устройство включает:

  • катоды, защищенные эмиттерным слоем;
  • выводные штыри;
  • концевую панель;
  • трубки для отвода инертного газа;
  • ртуть;
  • стеклянную штампованную ножку, дополненную электровводами и т.д.

Принцип функционирования основывается на возникновении электроразряда между электродами после подсоединения к электросети. После взаимодействия разряда с газами инертными и испарениями ртути возникает излучение ультрафиолета, воздействующее на люминофор, преобразующий энергию в световое излучение. Для корректировки оттенков ртутьсодержащих устройств применяются люминофоры с разными химическими компонентами.

Дуговой разряд в колбе создается оксидным самокалящимся катодом, на который воздействует электричество. Для включения ламп ДРЛ, ЛД катоды разогревают посредством пропускания разряда тока. Устройства с холодным катодом запускаются ионным воздействием в тлеющем разряде высокого напряжения.

Для функционирования люминесцентным приборам требуется дополнительный узел (балласт), обеспечивающий работу дросселем и стартером. Балласт регулирует силу разряда и выпускается 2 видов (электромагнитный и электронный).

Электромагнитный балласт является механическим. Устройство относится к бюджетным вариантам, в работе прибор может издавать шум.

Электронные узлы дороже по стоимости, работают бесшумно, оперативно включают систему, компактны.

Конструкция

В общем случае компактная люминесцентное устройство состоит из колбы, электронной платы и цоколя.

Герметичная стеклянная трубка

Колба полого типа (или герметичная изогнутая стеклянная трубка), которая подключается своими выводами к электронной плате.

Инертный газ внутри нее и ртутные пары

Такая трубка на заводе заполнены специальными газами (пары ртути, аргона и прочими газами)

Такие газы очень опасны для человека при повреждении устройства и важно соблюдать осторожность при использовании люминесцентных энергосберегающих устройств

Слой люминофора

Корпус газоразрядного устройства покрыт специальным составом — люминофором (смесь галофосфата кальция и других элементов).

Электрический разряд создает в колбе с парами ртути ультрафиолетовое излучение, которое с помощью люминофора изменяется в видимый световой поток.

Электронная плата

Электронная плата в газоразрядных приборах является важным составляющим звеном и от качества её сборки зависит срок службы и качество её свечения. Конструктивно такая плата состоит из:

  • Терморезистора — элемент, который обеспечивает плавный старт устройства и способствует прогреву спиралей лампы без мигания.
  • Пускового конденсатора — элемент, который непосредственно запускает прибор.
  • Фильтров — предохраняют электронную плату от помех;
  • Ёмкостного фильтра — уменьшает пульсации и исключает мерцание прибора;
  • Токоограничивющего дросселя — стабилизирует устройство и ограничивает ток;
  • Плавкого предохранителя — защищает устройство и отключает лампу при перегрузке;

Принцип работы

На динистор подается напряжение, которое формирует импульс. Этот импульс поступает на транзистор и приводит к его открытию. Как только запуск произведен, то цепь закрывается диодным мостом, конденсатор заряжается и повторного открытия не происходит.

Транзистор действует на трансформатор с несколькими обмотками и с ферритовым сердцевиком. На нити трансформатора подается напряжение и появляется свечение в колбе. При этом напряжение достигает высокого значения (до 600 В).

Когда инертный газ в колбе будет полностью ионизован, то напряжение уменьшается до достаточного для поддержания свечения лампы, что обеспечивает энергосберегающие свойства осветительного прибора.

2.9. U-образные люминесцентные лампы

Таблица 2.9.1. U-образные люминесцентные лампы диаметром 7 мм нормального исполнения

Тип Мощность, Вт Цоколь Цветопередача Световой поток, лм Длина l, мм Диаметр трубки, мм
L 20/25 U 20 2G13 2A 950 310 38
L 40/25 U 40 2G13 2A 2400 607 38
L 40/30 U 40 2G13 3 2700 607 38
L 65/20 U 65 2G13 2A 3900 765 38
L 65/30 U 65 2G13 3 4500 765 38

Таблица 2.9.2. Укороченные U-образные люминесцентные лампы, 570 мм

Тип Мощность, Вт Цоколь Цветопередача Световой поток, лм Длина l, мм Диаметр трубки, мм
L 40/21-840 UK 40 2G13 1B 2800 570 38
L 40/31-830 UK 40 2G13 1B 2800 570 38
L 65/21-840 UK 65 2G13 1B 4300 570 38
L 40/25 UK 40 2G13 2A 2300 570 38
L 65/25 UK 65 2G13 2A 3400 570 38

Рис. 18. U-образные люминесцентные лампы

Недостатки

Среди недостатков люминесцентных ламп выделяют:

  1. Повышенная стоимость изделий;
  2. Вредное влияние на самочувствие человека при длительной работе искусственного освещения. К тому же такие экономки вредны для глаз;
  3. Срок службы заметно сокращается при частом включении/отключении света;
  4. Выходят из строя при перепадах напряжения (необходимо дополнительно устанавливать устройство защиты от перенапряжения);
  5. Интенсивность освещения невозможно регулировать с помощью диммера;
  6. Запрещается использовать в запыленных и влажных помещениях (к примеру, при монтаже электропроводки в бане);
  7. Плохо работают при низких температурах;
  8. Если колбу разбить, ртуть может негативно повлиять на организм человека;
  9. Требуют специализированную утилизацию, которая может присутствовать далеко не в каждом городе.

Как Вы видите, недостатков у данных изделий больше, чем преимуществ. Все же при правильном использовании все недостатки сразу же «отлетают», оставляя только главное достоинство — высокие энергосберегающие свойства.

Как подключить лампу

Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.

Подключение с использованием электромагнитного балласта

Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.

Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.

Подключение при помощи ЭмПРА.

Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:

  • значительный расход электроэнергии;
  • длительный запуск, который может занимать 3 с;
  • схема не способна функционировать в условиях пониженных температур;
  • нежелательное стробоскопическое мигание, негативно влияющее на зрение;
  • дроссельные пластинки по мере износа могут издавать гудение.

Схема включает один дроссель на две лампочки, для одноламповой системы метод не подойдет.

Две трубки и два дросселя

В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.

Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.

Схема с двумя трубками и двумя дросселями.

От стартера контакт идет к лампе, а свободный полюс — к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.

Схема подключения двух ламп от одного дросселя

Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.

Схема подключения двух светильников от одного дросселя.

Электронный балласт

Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.

Такие аппараты не гудят во время работы и потребляют значительно меньше электроэнергии. Мерцаний не появляется даже при низких частотах напряжения.

Подключение с помощью электронного балласта.

Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.

Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.

Использование умножителей напряжения

Использование умножителей напряжения.

Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.

Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для  его стабилизации используются конденсаторы.

Тематическое видео: Подробно про умножитель напряжения

Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость

Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.

Подключение без стартера

Схема подключения без стартера.

Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.

В продаже можно найти аппараты с маркировкой RS, которая говорит о возможности подключения без стартера. Установка такого элемента в осветительный прибор помогает значительно сократить время зажигания.

Виды люминесцентных ламп

Все люминесцентные лампы принято делить на две большие группы: приборы высокого и низкого давления.

Приборы высокого давления нередко используются в уличных фонарях. Они способны выдавать сильный световой поток, однако параметры цветопередачи находятся на низком уровне. В продаже можно найти лампы с разным уровнем светоотдачи и оттенками свечения. Применяются для мощного освещения, в качестве декоративной подсветки строений.


Рисунок 2. Виды ЛЛ

ЛЛ низкого давления более распространены. Их широко используют в быту и на производстве. Чаще всего модели имеют вид небольших цилиндров. В подобных электроприборах есть пускорегулирующая аппаратура, которая снижает коэффициент пульсации и делает свечение более равномерным. Компонент представляет собой небольшую схему, размещенную в цоколе лампочки.

Проверка работоспособности системы

Каждый заново созданный продукт (и любое техническое изделие таковым является) после изготовления следует протестировать. Это комплексный процесс, состоящий из проверок на безопасность, функционирование, полноту возможностей, соответствие техническим стандартам и нормам.

Функциональное тестирование даёт полную информацию о состоянии проверяемого продукта на текущий момент, а также подробное описание недоработок и перспективы их устранения. В ходе анализа учитывается специфика продукта и требования к нему.

Люминесцентные лампы в своём составе имеют вольфрамовую нить накаливания. Для повышения срока её живучести нить покрывается слоем активного щелочного металла. Но при частых и многочисленных включениях и выключениях защитное покрытие осыпается и нить перегорает. Проверить, цела ли нить накала, легко можно мультиметром. При нарушении герметичности баллона в лампу попадает воздух, и такую лампу следует заменять.

Неисправность дросселя обнаруживается по его гудению, мерцанию лампы, появлению «змеек» внутри лампы, слишком короткой работе после включения. Сгоревший дроссель пахнет горелым, он ремонту не подлежит, надо только менять

Достоинства и недостатки КЛЛ.

Достоинства и недостатки объясняются физическими принципами формирования светового потока.

Наибольшим плюсом является, что компактные люминесцентные лампы полностью совместимы с обычными резьбовыми патронами, не требуется прилагать усилия для перехода на новый тип.

Им всем присущи плюсы и минусы газоразрядных осветителей.

Плюсы

  • Энергоэффективность (с сравнении с лампами накаливания);
  • Меньший нагрев;
  • Больший световой поток;
  • Долгий срок полезной эксплуатации;
  • Высокие показатели цветопередачи (индекс Ra);
  • Большая светоотдача;
  • Отсутствует эффект стробирования (благодаря высокочастотному разряду);
  • Отсутствует гуд;
  • Быстрое включение (не более одной секунды);
  • Свет близок к естественному;
  • Широкий ассортимент;
  • Разные оттенки освещения;
  • Равномерное распределение света;
  • Отсутствуют нюансы реактивной мощности.

Минусы

  • Сложности утилизации (из-за содержащейся ртути);
  • Снятие с производства в 2021 году;
  • Не совместимы с диммерами;
  • Вспышки в выключенном состоянии (только при неправильном подключении выключателя);
  • Снижение яркости (к концу срока службы из-за деградации люминофора);
  • Сложности включения при отрицательных температурах;
  • Не «любят частого включения\выключения»;
  • Механическая хрупкость.
Поделитесь в социальных сетях:FacebookX
Напишите комментарий