Базовые формулы
Чтобы получить более-менее точный результат, необходимо выполнять вычисления по всем правилам, упрощенная методика (100 Вт теплоты на 1 м² площади) здесь не подойдет. Общие потери теплоты зданием в холодное время года складываются из 2 частей:
- теплопотерь через ограждающие конструкции;
- потерь энергии, идущей на нагрев вентиляционного воздуха.
Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:
Q = 1/R х (tв — tн) х S х (1+ ∑β). Здесь:
- Q — количество тепла, теряемого конструкцией одного типа, Вт;
- R — термическое сопротивление материала конструкции, м²°С / Вт;
- S — площадь наружного ограждения, м²;
- tв — температура внутреннего воздуха, °С;
- tн — наиболее низкая температура окружающей среды, °С;
- β — добавочные теплопотери, зависящие от ориентации здания.
Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула R = δ / λ, где:
- λ — справочное значение теплопроводности материала стены, Вт/(м°С);
- δ — толщина слоя из этого материала, м.
Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:
- Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
- Если конструкция обращена на юго-восток или запад, β = 0,05.
- β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.
Вычисляем объем системы отопления
Эта величина необходима для подбора правильного объема расширительного бака. Вычисляется как сумма объема в радиаторах, трубопроводах и котле. Справочная информация по радиаторам и трубопроводам приведена ниже, по котлу – указана в его паспорте.
Объем теплоносителя в радиаторе:
- алюминиевая секция — 0,450 литра
- биметаллическая секция — 0,250 литра
- новая чугунная секция — 1,000 литр
- старая чугунная секция — 1,700 литра
Объем теплоносителя в 1 п.м. трубы:
- ø15 (G ½») — 0,177 литра
- ø20 (G ¾») — 0,310 литра
- ø25 (G 1,0″) — 0,490 литра
- ø32 (G 1¼») — 0,800 литра
- ø15 (G 1½») — 1,250 литра
- ø15 (G 2,0″) — 1,960 литра
Пример расчета теплопотерь жилого дома
Рассмотрим стандартный алгоритм для варианта с общим контуром. Ниже последовательно приведены главные особенности основных этапов.
Тепловые потери на вентиляцию
Берут совокупный свободный объем, вычисляют массу воздуха. С учетом нормированной кратности обмена за 24 часа и удельной теплоемкости определяют количество потерянного тепла. Полученное значение из джоулей переводят для удобства в киловатт-часы.
Теплопотери через стены
Уточняют послойно толщину и состав стен. Далее пользуются приведенными выше формулами для получения общей теплопроводности. Поправочный коэффициент разницы температур берут в справочнике для конкретного региона. Как отмечено выше, следует сделать расчет точки росы.
Теплопотери через окна
В этом блоке вычислений следует учесть:
- количество камер стеклопакета (в рамах);
- тип заполнения пленочных покрытий;
- особенности конструкции оконных проемов.
Теплопотери через потолок
Для каждого варианта существует отдельный порядок расчета:
- комнаты верхнего этажа находятся под «холодным» чердаком;
- мансарда отапливается в нормальном режиме;
- промежуток между перекрытием и кровельным покрытием активно вентилируется.
Как и в случае со стенами, суммируют параметры каждого слоя.
Теплопотери через пол
Здесь также имеют значение особенности архитектурных решений:
- режим и наличие отопления в подвале;
- применение вентиляции;
- непосредственный контакт пола с грунтом или наличие изоляционного слоя.
Теплопотери на инфильтрацию
Этим термином обозначают произвольное проникновение наружного воздуха в комнаты через строительные конструкции. Если для расчета теплопотерь дома применить известный калькулятор онлайн Valtec, с поправкой на инфильтрацию потери будут увеличены на 60-70%. Реальная ситуация существенно отличается от подобного расчета. Деревянные стены старого дома обеспечивают хорошую естественную вентиляцию. Здание из монолитного бетона с многокамерными оконными блоками обеспечивает идеальную герметичность. В современных зданиях приходится решать вопросы принудительной вентиляции для создания внутри здоровых условий.
Строительные нормы и правила
Для установления и закрепления норм теплопотерь дома существуют своды правил (СП), нормы и правила (СНиП), применяемые при строительстве, и ГОСТ:
- СП 131.13330.2012 – о строительной климатологии;
- СП 50.13330.2010 – о тепловой защите зданий;
- СП 60.13330.2012 – об отоплении, вентилировании и кондиционировании в зданиях воздуха.
- СНиП 2.04.07-86* – о тепловых сетях;
- СНиП 2.08.01-89* – о жилых зданиях;
- СНиП 2.04.05-91* – об отоплении, вентилировании и кондиционировании.
- ГОСТ 22270-76 – об оборудовании для кондиционирования, вентиляции и отопления;
- ГОСТ 30494-2011 – о параметрах микроклимата в помещениях жилых и общественных зданий;
- ГОСТ 31311-2005 – об отопительных приборах.
Данные энергетического паспорта МКД должны соответствовать вышеуказанной технической документации и быть в пределах регламентированных нормативов.
Особенности расчета теплопотерь деревянного дома
Расчет теплопотерь дома, особенности которого при вычислении необходимо учитывать, проводится в несколько этапов. Процесс требует особого внимания и сосредоточенности. Вычислить теплопотери в частном доме по простой схеме можно так:
- Определяют через стены.
- Рассчитывают через оконные конструкции.
- Через дверные проемы.
- Производят расчет через перекрытия.
- Вычисляют теплопотери деревянного дома через напольное покрытие.
- Складывают полученные ранее значения.
- Учитывая тепловое сопротивление и потерю энергии через вентиляцию: от 10 до 360%.
Для результатов пунктов 1-5 используется стандартная формула расчета теплопотери дома (из бруса, кирпича, дерева).
Важно! Теплосопротивление для оконных конструкций берется из СНИП ІІ-3-79. Строительные справочники зачастую содержат информацию в упрощенной форме, то есть результаты расчета теплопотери дома из бруса приводятся для разных типов стен и перекрытий
Например, вычисляют сопротивление при разнице температур для нетипичных помещений: угловых и не угловых комнат, одно- и многоэтажных строений
Строительные справочники зачастую содержат информацию в упрощенной форме, то есть результаты расчета теплопотери дома из бруса приводятся для разных типов стен и перекрытий. Например, вычисляют сопротивление при разнице температур для нетипичных помещений: угловых и не угловых комнат, одно- и многоэтажных строений.
Вычисляем теплопотери дома
От расчета теплопотерь дома зависит несколько критических параметров системы отопления и в первую очередь – мощность котла.
Последовательность расчета следующая:
Вычисляем и записываем в столбик площадь окон, дверей, наружных стен, пола, перекрытия каждой комнаты. Напротив каждого значения записываем коэффициент теплопроводности материалов, из которых построен наш дом.
Если вы не нашли нужный материал в , то посмотрите в расширенной версии таблицы, которая так и называется – коэффициенты теплопроводности материалов (скоро на нашем сайте). Далее, по ниже приведенной формуле вычисляем потери тепла каждого элемента конструкции нашего дома.
Q = S * ΔT / R,
где Q – потери тепла, ВтS — площадь конструкции, м2
ΔT — разница температур внутри и снаружи помещения для самых холодных дней °C
R — значение теплосопротивления конструкции, м2·°C/Вт
R слоя = V / λ
где V — толщина слоя в м,
λ — коэффициент теплопроводности (см. таблицу по материалам).
Суммируем теплосопротивление всех слоев. Т.е. для стен учитывается и штукатурка и материал стен и наружное утепление (если есть).
Складываем все Q для окон, дверей, наружных стен, пола, перекрытия
К полученной сумме добавляем 10-40% вентиляционных потерь. Их тоже можно вычислить по формуле, но при хороших окнах и умеренном проветривании, смело можно ставить 10%.
Результат делим на общую площадь дома. Именно общую, т.к. косвенно тепло будет тратиться и на коридоры, где радиаторов нет. Вычисленная величина удельных теплопотерь может колебаться в пределах 50-150 Вт/м2. Самые высокие потери тепла у комнат верхних этажей, самые низкие у средних.
После окончания монтажных работ, проведите тепловизионный контроль стен, потолков и других элементов конструкции, чтобы убедиться, что нигде нет утечек тепла.
Приведенная ниже таблица поможет точнее определиться с показателями материалов.
Выбираем котел
Главный параметр – мощность котла должна соответствовать рассчитанным ранее теплопотерям (как минимум перекрывать их). Кратко — общие критерии выбора.
- Доступное топливо (газ, дизель, твердое топливо).
- Если выбор пал на газовый котел, определяем потребности в горячей воде, количество точек водоразбора. Для 1 кухни и 1 санузла семье из 4 человек достаточно двухконтурного котла проточного типа. Большей семье для дома с 2 и более санузлами целесообразнее выбрать котел со встроенным бойлером. При значительном удалении санузлов лучше взять одноконтурный котел с бойлером косвенного нагрева.
- Для экономичности предпочтительнее модели с закрытой камерой сгорания. Для дома с дымоходом – котел с открытой камерой сгорания.
- Мощность одноконтурного котла с бойлером косвенного нагрева принимаем равной мощности отопления. Для двухконтурного – минимум 23 кВт, чтобы обеспечить нужный расход ГВС.
Более подробно о том, как выбрать котел, мы рассказываем здесь.
Как выполнить расчет теплопроводности стены
При выборе утеплителя для стен важно учитывать, в какой температурной зоне находится помещение, а также теплоизоляционные характеристики материала стен. Большая часть территории России, за исключением некоторых областей, находится в переменчивой климатической зоне
Для подобных температурных режимов коэффициент сопротивления теплопередач должен быть равен трем или немного больше трех. Если стены построены из кирпича и толщина составляет не более 50 см, то коэффициент сопротивления теплопередачи стен будет составлять не более, чем 0,7.
Чтобы стены имели соответствующие нормам теплоизоляционные характеристики, потребуется утеплитель с коэффициентом сопротивления теплоотдачи не меньше 2,6. Этому показателю соответствует пенопласт толщиной до 10 см
Очень важно учитывать и теплопотери через стены
Как рассчитать теплопотери дома?
В большой мере на сохранение температур влияет надежность установленных окон и само расположение помещения относительно всей постройки. При указании нужного типа остекления стоит знать, что обычные стекла, а не стеклопакеты могут быть главной причиной теплопотерь. Отсутствие теплоизоляции стен в кирпичном строении недопустимо за счет неплохого сохранения температур материалом, способным поддерживать нужный режим в комнатах. Обычные помещения из железобетонных плит или бетонных блоков в недостаточной мере задерживают тепло.
Специальный калькулятор расчета теплопотерь стен дома учитывает и соотношение площади окон относительно площади пола. Чем выше получаемый процент, тем больше коэффициент потерь тепла. Подсчет производится суммированием площади всех окон в комнате и определением их процентного соотношения относительно площади пола.
Температура снаружи учитывается по средним показателям во время зимнего периода. Количество стен, которые выходят наружу, напрямую сказываются на сохранности заданных температур: именно через стены происходит наибольшая отдача тепла. Поэтому точный расчет теплопотерь дома можно получить только при правильном задании параметров комнаты.
Указание типа помещения, размеров стен, пола и потолка необходимы для корректного расчета потери тепла для каждой плоскости. Это позволит калькулятору провести суммирование и, опираясь на дополнительные данные (количество и тип остекления окон, утепление стен) получить правильный результат.
Удельные тепловые потери здания
Существует много способов расчета тепловых потерь здания, один из них – в предложенной ниже таблице.
Таблица « Удельные тепловые потери для основных охлаждающихся поверхностей в жилых зданиях»:
Вид стен и охлаждающихся поверхностей | Количество теряемого тепла (Вт/ккал/ч) через 1 м2 поверхности стен по внутреннему обмеру помещения при средней температуре наиболее холодной пятидневки (°С) | |||
24-25 | 25-26 | 28-29 | 30-31 | |
Кирпичная стена толщиной в три с половиной кирпича (93 см), оштукатуренная с двух сторон | ||||
Угловые помещения | 61/53 | 66/57 | 69/60 | 71/61 |
Смежные с другими помещения | 55/48 | 59/51 | 61/53 | 64/55 |
Угловые помещения | 54/47 | 58/50 | 61/53 | 62/54 |
Смежные с другими помещения | 50/43 | 52/45 | 54/47 | 55/48 |
Кирпичная стена толщиной в три кирпича (80 см), оштукатуренная с двух сторон | ||||
Угловые помещения | 66/57 | 71/61 | 74/64 | 75/65 |
Смежные с другими помещения | 64/55 | 67/58 | 71/61 | 72/62 |
Угловые помещения | 61/53 | 65/56 | 68/59 | 69/60 |
Смежные с другими помещения | 56/49 | 60/52 | 62/54 | 63/55 |
Кирпичная стена толщиной в два с половиной кирпича (67 см), оштукатуренная с двух сторон | ||||
Угловые помещения | 75/65 | 82/71 | 86/74 | 88/76 |
Смежные с другими помещения | 74/64 | 80/69 | 82/71 | 84/73 |
Угловые помещения | 69/60 | 74/64 | 77/67 | 79/68 |
Смежные с другими помещения | 65/57 | 71/61 | 74/64 | 75/65 |
Кирпичная стена толщиной в два кирпича (54 см), оштукатуренная с двух сторон | ||||
Угловые помещения | 90/78 | 96/83 | 101/87 | 103/89 |
Смежные с другими помещения | 89/77 | 95/82 | 100/86 | 101/87 |
Угловые помещения | 81/70 | 87/75 | 90/78 | 93/80 |
Смежные с другими помещения | 79/68 | 86/74 | 88/76 | 90/78 |
Деревянная рубленая стена из бревен, оштукатуренная с одной стороны, толщиной 20 см | ||||
Угловые помещения | 77/67 | 82/71 | 87/75 | 88/76 |
Смежные с другими помещения | 75/95 | 80/69 | 83/72 | 86/74 |
Угловые помещения | 68/59 | 74/64 | 77/67 | 79/69 |
Смежные с другими помещения | 66/57 | 72/62 | 74/64 | 76/66 |
Деревянная рубленая стена из бревен, оштукатуренная с одной стороны, толщиной 25 см | ||||
Угловые помещения | 60/52 | 65/56 | 67/58 | 69/60 |
Смежные с другими помещения | 59/51 | 62/54 | 66/57 | 67/58 |
Угловые помещения | 54/47 | 58/50 | 60/52 | 61/53 |
Смежные и другие помещения | 53/46 | 56/49 | 59/51 | 60/52 |
Деревянная брусковая стена, оштукатуренная с одной стороны, общей толщиной 12 см | ||||
Угловые помещения | /75 | /80 | /84 | /86 |
Смежные с другими помещения | /73 | /78 | /82 | /84 |
Угловые помещения | /67 | /71 | /74 | /76 |
Смежные с другими помещения | /65 | /70 | /73 | /75 |
Деревянная брусковая стена, оштукатуренная с одной стороны, общей толщиной 20 см | ||||
Угловые помещения | /47 | /50 | /52 | /53 |
Смежные с другими помещения | /46 | /49 | /51 | /52 |
Угловые помещения | /42 | /45 | /46 | /47 |
Смежные с другими помещения | /41 | /44 | /46 | /47 |
Окна с двойным остеклением (переплетами) и балконные двери | /100 | /103 | /112 | /115 |
Чердачное перекрытие | /26 | /28 | /29 | /30 |
Деревянные утепленные полы над подвалом или подпольем | /19 | /21 | /22 | /23 |
Тепловые потери зависят от многих факторов: теплонепроницаемости дверей, окон, стен, перекрытий и уличной температуры. Правильно выбранная печь должна соответствовать средней часовой теплоотдаче и такой же теплопотере.
Описание процесса расчета
Все программы и калькуляторы, подсчитывающие утечку тепла, основаны на существующих расчетных формулах в соответствии с правилами и нормативами. В рекомендуемом расчете теплопотерь дома, необходимо вводить параметры помещения или дома, в соответствующие графы.
Параметры, применяемые в расчетах
Для получения коэффициента, характеризующего потери тепла, необходимо учитывать следующие данные:
- разницу внутренней и внешней температур;
- объем воздуха в помещении;
- способность ограждений (стен, потолка, окон и т.д.) удерживать тепло.
Последний показатель учитывает тепловое сопротивление стройматериала.
Формула и исходные данные для расчета
Упрощенная формула для расчета теплопотерь помещения выглядит следующим образом:
Q = S· T : R,
где Q – объем теплопотерь, S – объем помещения, T – разница между внешней и внутренней температурами, R – величина сопротивления утечки тепла материала.
Для подсчетов по формуле необходимо вводить следующие данные:
- для вычисления объема (S) – метраж помещения и высоту потолков;
- для установления разницы температур (T) – значения наружной и внутренней температур воздуха;
- для определения (R) – типы материала фасада, наружных стен, стеклопакетов и т.д, а также их физические свойства.
При подсчете утечки тепла стоит понимать, что абсолютно все факторы не поддаются полному учету. Это и конструктивные ошибки, и внутри стеновой конденсат. Поэтому полученные данные лучше проверить экспериментальным путем.
Теплопотери стен
Qcт=Kст*Fст(tвнут-tвнеш), где
- Kст – коэффициент теплопроводности материала, °С м2/Вт;
- Fст – площадь стены, м2;
- tвнут – температура внутри помещения, °С;
- tвнеш – температура снаружи, °С.
Стены дома непосредственно контактируют с внешней средой, поэтому при правильной постройке большая часть тепла будет уходить именно через них. Помимо материала на теплопотери за счет стен влияет внутренняя и наружная отделка, количество слоев стены и их теплопроводность, толщина стены. Слабыми местами в стеновых потерях являются потери на швы между панелями, различные технологические отверстия.
Для того чтобы сократить потери необходимо между слоями стены создать воздушную прослойку или прослойку, утепленную пористым утеплителем, так как воздух плохо проводит тепло и помогает сохранить его в помещении. Технологические отверстия также следует обкладывать утеплителем, для лучшего сохранения тепла.
Расчет потерь тепла
Для точного расчета теплопотерь потребуется подготовить исходные данные по конкретному объекту (объем, высота здания, его местоположение), а также нормативные документы, содержащие таблицы различных коэффициентов, показателей. Сначала рекомендуется рассчитать все составляющие формулы, записать данные, затем подставить данные формулы.
Основные формулы
Для расчета используется следующая формула:
Qот = а*V*qот *(tв — tнр)*(1 + Кир)*10-6 Гкал/час
- а – поправочный коэффициент, который учитывает разницу между температурой воздуха снаружи (улица) определенной местности и температурой -30оС, для которой обозначена характеристика qот;
- V – объем здания по внешнему периметру;
- qот — удельная характеристика отапливаемого помещения, которая обозначена при температуре снаружи -30оС;
- tв –температура воздуха внутри помещения;
- tнр –температура снаружи конкретного местоположения (местности), в котором расположено здание;
- Кир –коэффициент инфильтрации, определяемый тепловым, ветровым напором.
Из приведенных выше составляющих формулы к числу исходных данных относится объем помещения, поправочный коэффициент, удельную характеристику здания, расчетные температуры необходимо взять из документации, а коэффициент инфильтрации рассчитать по формуле:
273 + tнр
Кир = 10-2 √[2gL(1 — ————-) + wp2]
273 + tв
g – ускорение свободного падения земли (9,8 м/с2);
L – высота строения;
wp — обусловленная данным регионом скорость ветра отопительного периода.
Необходимая документация
Часть данных необходимо взять в нормативной документации, рекомендуется скачать эти документы или найти их онлайн:
Методика определения количества тепловой энергии и теплоносителя (1);
Общие санитарно-гигиенические требования к воздуху рабочей зоны (2);
Здания жилые и общественные. Параметры микроклимата в помещениях (3);
Строительная климатология (4).
Для удобства литература пронумерована. Далее соответствующая документация будет обозначаться сокращенно (например, Д3).
Исходные данные. Предварительные подсчеты
Рассмотрим расчет теплопотерь на примере административного здания города Омск. Высота здания – 9 метров. Объем здания по внешнему периметру – 8560 кубических метров.
В Таблице 3.1 – Климатические параметры холодного периода года (Д4) напротив соответствующего города находим 5-ую графу, температуру воздуха наиболее холодной пятидневки. Для Омска данный показатель равен – 37оС.
В 20-й графе этой же таблицы находим скорость ветра данного города. Данный показатель составляет 2,8 м/с.
В пункте 1.2 (Д1) находим Таблицу 2, поправочный коэффициент а для жилых помещений. В таблице представлены коэффициенты температуры шагом 5 градусов, соответственно есть данные температуры — 35 оС (коэффициент 0,95), — 40 оС (коэффициент 0,9). Рассчитываем методом интерполяции коэффициент нашей температуры — 37 оС, получаем – 0,93.
Далее п.3 (Д3) находим Классификацию помещений и определяем категорию анализируемого помещения. Поскольку речь идет об административном здании, ему присваивается категория 3в (пространство пребывания большого количества людей без верхней одежды в положении стоя).
Таблица 3 (Д3) Допустимые, достаточные значения увлажненности воздуха, силы ветра, температурного режима гражданских помещений – находим показатель Температура (оптимальная) для нашего типа здания (3в). Показатель составляет 18-20 градусов. Выбираем наименьшую границу 18оС.
Таблице 4 (Д1) Удельный показатель тепла культурно-образовательных, административных, лечебных зданий – находим соответствующий коэффициент, исходя из объема здания. Данный случай до 10 000 м3. Коэффициент составляет 0,38.
Все данные подготовлены:
g – 9,8 м/с2;
L – 9 м;
wp – 2,8 м/с;
а –0,93;
V – 8560 м3;
qот – 0,38;
tв – 18оС;
tнр – — 37оС;
Кир – необходимо рассчитать.
Далее можно просто подставить цифры формулы.
Итоговый расчет
Сначала рассчитываем коэффициент инфильтрации:
273 + (-37)
Кир = 10-2 √ = 0,4
273 + 18
Qот = 0,93*8560*0,38*(18 – (-37))*(1 + 0,4)*10-6 Гкал/час = 232933 *10-6 Гкал/час = 0,232933 Гкал/час
Для большего понимания, посмотрите данное видео:
Теплосопротивление
Если вам нужно взять в руки горячую кастрюлю, какие перчатки вы выберете: тканевые или стёганые ватные рукавицы? Вы выберете те перчатки, которые будут хуже пропускать тепло.
Это называется теплосопротивлением материала.
Любой дом построен из каких-то материалов. И чем лучше он сопротивляется передаче тепла, тем меньше нужно тратить энергии на его отопление или охлаждение.
В Международной системе единиц (СИ) сопротивление теплопередаче ограждающей конструкции измеряется разностью температуры в кельвинах (либо в градусах Цельсия) у поверхностей этой конструкции, требуемой для переноса 1 Вт мощности энергии через 1 м² площади конструкции (м²·K/Вт или м²·°C/Вт).
Так как здание строится из разных материалов, то нужно рассчитывать теплосопротивление окон, крыши, пирога стен, дверей и т.д.
Сопротивление теплопередаче отражает теплозащитные свойства ограждающей конструкции и складывается из термических сопротивлений отдельных однородных слоёв конструкции.
Когда мы посчитаем теплосопротивление ограждающих конструкций, можно будет посчитать, какое количество тепла теряет каждая комната и после этого подобрать оборудование, которое будет компенсировать эти тепловые потери.
Логично предположить, что если тепло перемещается из дома на улицу, то нужно измерить его количество и компенсировать его. Так мы плавно подошли к тому, что отопление — это система, компенсирующая тепловые потери здания.
Факторы, влияющие на теплопотери
Тепло может перемещаться в любую сторону: вверх, вбок и вниз. Мне регулярно встречаются люди, которые уверены, что тепло идёт только вверх.
Но их утверждение я легко опровергаю простым опытом: предлагаю им взять обычную канцелярскую скрепку, разогнуть её и держать её кончик в пальцах вертикально.
нагреваю скрепку зажигалкой
Если нагревать другой конец скрепки, то она почти мгновенно вся нагреется и тепло начнёт обжигать пальцы. Как такое может происходить, если тепло идёт вверх?
Очевидно, что в твёрдых веществах тепло распространяется в разные стороны.
Так и в доме тепло уходит через пол, стены, окна и крышу.
Инфильтрация
В помещениях находятся люди и они дышат. При расчётах это нужно учитывать. Наверняка вы можете вспомнить случай, когда вы находились в помещении с большим количеством людей и там было душно и жарко.
Если взять 2 абсолютно одинаковых дома, только в одном будет жить 3 человека, а в другом 6 человек, то тепловые потери будут отличаться у этих домов в разы. И это нужно учитывать.
Исходные данные для теплового расчета системы отопления
Прежде чем приступать к подсчетам и работе с данными, их необходимо получить
Здесь для тех владельцев загородных домов, которые прежде не занимались проектной деятельностью, возникает первая проблема – на какие характеристики стоит обратить свое внимание. Для вашего удобства они сведены в небольшой список, представленный ниже
- Площадь постройки, высота до потолков и внутренний объем.
- Тип здания, наличие примыкающих к нему строений.
- Материалы, использованные при возведении постройки – из чего и как сделаны пол, стены и крыша.
- Количество окон и дверей, как они обустроены, насколько качественно утеплены.
- Для каких целей будут использоваться те или иные части здания – где будут располагаться кухня, санузел, гостиная, спальни, а где – нежилые и технические помещения.
- Продолжительность отопительного сезона, средний минимум температуры в этот период.
- «Роза ветров», наличие неподалеку других строений.
- Местность, где уже построен или только еще будет возводиться дом.
- Предпочтительная для жильцов температура тех или иных помещений.
- Расположение точек для подключения к водопроводу, газу и электросети.
Теплопотери в доме
Мероприятия по теплоизоляции, приведенные на изображении выше, помогут существенно уменьшить количество энергии и теплоносителя, необходимого для обогрева жилого дома
Подсчет вручную
Исходные данные. Одноэтажный дом площадью 8х10 м, высотой 2,5 м. Стены толщиной 38 см сложены из керамического кирпича, изнутри отделаны слоем штукатурки (толщина 20 мм). Пол изготовлен из 30-миллиметровой обрезной доски, утеплен минватой (50 мм), обшит листами ДСП (8 мм). Здание имеет подвал, температура в котором зимой составляет 8°C. Потолок перекрыт деревянными щитами, утеплен минватой (толщина 150 мм). Дом имеет 4 окна 1,2х1 м, входную дубовую дверь 0,9х2х0,05 м.
Задание: определить общие теплопотери дома из расчета, что он находится в Московской области. Средняя разность температур в отопительный сезон – 46°C (как было сказано ранее). Помещение и подвал имеют разницу по температуре: 20 – 8 = 12°C.
1. Теплопотери через наружные стены.
Общая площадь (за вычетом окон и дверей): S = (8+10)*2*2,5 – 4*1,2*1 – 0,9*2 = 83,4 м2.
Определяется теплосопротивление кирпичной кладки и штукатурного слоя:
- R клад. = 0,38/0,52 = 0,73 м2*°C/Вт.
- R штук. = 0,02/0,35 = 0,06 м2*°C/Вт.
- R общее = 0,73 + 0,06 = 0,79 м2*°C/Вт.
- Теплопотери сквозь стены: Q ст = 83,4 * 46/0,79 = 4856,20 Вт.
2. Потери тепла через пол.
Общая площадь: S = 8*10 = 80 м2.
Вычисляется теплосопротивление трехслойного пола.
- R доски = 0,03/0,14 = 0,21 м2*°C/Вт.
- R ДСП = 0,008/0,15 = 0,05 м2*°C/Вт.
- R утепл. = 0,05/0,041 = 1,22 м2*°C/Вт.
- R общее = 0,03 + 0,05 + 1,22 = 1,3 м2*°C/Вт.
Подставляем значения величин в формулу для нахождения теплопотерь: Q пола = 80*12/1,3 = 738,46 Вт.
3. Потери тепла через потолок.
Площадь потолочной поверхности равна площади пола S = 80 м2.
Определяя теплосопротивление потолка, в данном случае не берут во внимание деревянные щиты: они закреплены с зазорами и не являются барьером для холода. Тепловое сопротивление потолка совпадает с соответствующим параметром утеплителя: R пот
= R утепл. = 0,15/0,041 = 3,766 м2*°C/Вт.
Величина теплопотерь сквозь потолок: Q пот. = 80*46/3,66 = 1005,46 Вт.
4. Теплопотери через окна.
Площадь остекления: S = 4*1,2*1 = 4,8 м2.
Для изготовления окон использован трехкамерный ПВХ профиль (занимает 10 % площади окна), а также двухкамерный стеклопакет с толщиной стекол 4 мм и расстоянием между стеклами 16 мм. Среди технических характеристик производитель указал тепловые сопротивления стеклопакета (R ст.п. = 0,4 м2*°C/Вт) и профиля (R проф. = 0,6 м2*°C/Вт). Учитывая размерную долю каждого конструктивного элемента, определяют среднее теплосопротивление окна:
- R ок. = (R ст.п.*90 + R проф.*10)/100 = (0,4*90 + 0,6*10)/100 = 0,42 м2*°C/Вт.
- На базе вычисленного результата считаются теплопотери через окна: Q ок. = 4,8*46/0,42 = 525,71 Вт.
5. Дверь.
Площадь двери S = 0,9*2 = 1,8 м2. Тепловое сопротивление R дв. = 0,05/0,14 = 0,36 м2*°C/Вт, а Q дв. = 1,8*46/0,36 = 230 Вт.
Итоговая сумма теплопотерь дома составляет: Q = 4856,20 Вт + 738,46 Вт + 1005,46 Вт + 525,71 Вт + 230 Вт = 7355,83 Вт. С учетом инфильтрации (10 %) потери увеличиваются: 7355,83*1,1 = 8091,41 Вт.
Дата: 5 июля 2016
Программное обеспечение при проектировании отопительной системы
С помощью компьютерных программ от можно рассчитать все материалы, затраченные на отопление, а также сделать подробный поэтажный план коммуникаций с отображением радиаторов, удельной теплоемкости, энергозатрат, узлов.
Фирма предлагает базовый САПР для проектных работ любой сложности – ZWCAD 2021 Professional. В нем можно не только сконструировать отопительную систему, но и создать подробную схему для строительства всего дома. Это можно реализовать благодаря большому функционалу, числу инструментов, а также работе в двух– и трехмерном пространстве.
Перед постройкой дома сделайте теплотехнический расчет. Это поможет вам не ошибиться с выбором оборудования и покупкой стройматериалов и утеплителей.
Необходимые нормативные документы
Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:
- СНиП 23-02-2003 (СП 50.13330.2012). “Тепловая защита зданий”. Актуализированная редакция от 2012 года .
- СНиП 23-01-99* (СП 131.13330.2012). “Строительная климатология”. Актуализированная редакция от 2012 года .
- СП 23-101-2004. “Проектирование тепловой защиты зданий” .
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). “Здания жилые и общественные. Параметры микроклимата в помещениях” .
- Пособие. Е.Г. Малявина “Теплопотери здания. Справочное пособие” .
Скачать СНиПы и СП вы можете здесь, ГОСТ – здесь, а Пособие – здесь.
Формула расчета
Нормативы расхода тепловой энергии
Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.
Для чего необходим такой коэффициент? С его помощью можно:
- Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
- Варьировать температурный режим внутри помещений дома.
Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:
- Через наружные стены покидает здание до 40% тепла.
- Через полы — до 10%.
- То же самое относится и к крыше.
- Через вентиляционную систему — до 20%.
- Через двери и окна — 10%.
Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции
Это немаловажный фактор
Это немаловажный фактор.
К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:
- Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
- Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
- Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.
Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:
- Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
- Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
- При 20% — 1,0.
- При 30% —2.
- При 40% — 1,4.
- При 50% — 1,5.
И это только окна. А есть еще влияние материалов, которые использовались в строительстве дома, на тепловые нагрузки. Расположим их в таблице, где стеновые материалы будут располагаться с уменьшением тепловых потерь, а значит, их коэффициент будет также снижаться:
Вид строительного материала
Как видите, разница от используемых материалов существенная. Поэтому еще на стадии проектирования дома необходимо точно определиться с тем, из какого материала он будет возводиться. Конечно, многие застройщики строят дом на основе бюджета, выделенного на строительство. Но при таких раскладках стоит пересмотреть его. Специалисты уверяют, что лучше вложиться первоначально, чтобы впоследствии пожинать плоды экономии от эксплуатации дома. Тем более что система отопления зимой составляет одну из главных статей расхода.
Размеры комнат и этажность здания
Схема системы отопления
Итак, продолжаем разбираться в коэффициентах, влияющих на формулу расчета тепла. Как влияют размеры помещения на тепловые нагрузки?
- Если высота потолков в вашем доме не превышает 2,5 метра, то в расчете учитывается коэффициент 1,0.
- При высоте 3 м уже берется 1,05. Незначительная разница, но она существенно влияет на тепловые потери, если общая площадь дома достаточно велика.
- При 3,5 м — 1,1.
- При 4,5 м —2.
А вот такой показатель, как этажность постройки, влияет на теплопотери помещения по-разному. Здесь необходимо учитывать не только количество этажей, но и место помещения, то есть, на каком этаже оно расположено. К примеру, если это комната на первом этаже, а сам дом имеет три-четыре этажа, то для расчета используется коэффициент 0,82.
При перемещении помещения в верхние этажи повышается и показатель теплопотерь. К тому же придется учитывать чердак — утеплен он или нет.
Как видите, чтобы точно подсчитать тепловые потери здания, необходимо определиться с различными факторами. И их все обязательно надо учитывать. Кстати, нами были рассмотрены не все факторы, снижающие или повышающие тепловые потери. Но сама формула расчета будет в основном зависеть от площади отапливаемого дома и от показателя, который называется удельным значением тепловых потерь. Кстати, в данной формуле оно стандартное и равно 100 Вт/м². Все остальные составляющие формулы — коэффициенты.