Виды фундаментных блоков
Чаще всего на практике применяются фундаментные блоки типов ФБС и ФЛ:
- Требования к производству блоков ФЛ определены в ГОСТ 13580 85 на ленточный фундамент. Они используются для монтажа оснований под ленточные фундаменты, отличаются трапециевидным сечением, что позволяет получить большую площадь опоры конструкции на грунт.
- Блоки ФБС используются для монтажа основной конструкции фундамента. Они позволяют ускорить строительство, но для монтажа потребуется применение подъемной техники.
Все фундаментные блоки изготавливаются из тяжелых бетонов, при этом предусмотрено обязательное армирование конструкции. Соблюдение всех технологических нюансов технологии возможно только в заводских условиях.
Нередко бетонные блоки небольшого размера применяются при монтаже столбчатых фундаментов. При этом могут применяться элементы из различных типов бетона, и требования к ним определяются соответствующими нормативными документами.
Блоки ФЛ
Данные блоки еще называют фундаментными подушками, а все основные конструктивные требования (в части габаритов, устойчивости к нагрузке) определяет ГОСТ на размеры на ленточный фундамент, ведь во многом от габаритов и зависит работоспособность всей конструкции.
Блок имеет расширенное основание, существующий ГОСТ предполагает выпуск элементов со следующими типовыми размерами:
- Длина — 780; 1180 и 2380 мм, благодаря этому существует возможность монтажа, не прибегая к подгонке по этому размеру.
- Ширина — данный ряд более обширен, в него входит 10 значений от 600 до 3200 мм. На выбор плиты по данному параметру оказывают влияние конструктивные особенности фундамента и предполагаемая нагрузка.
- Высота — 300 и 500 мм, эти размеры считаются основными типовыми.
Фундаментные подушки или плиты используются при строительстве загородных домов, коттеджей, других типов помещений. Они незаменимы при устройстве цокольных помещений и подвалов.
Блоки ФБС
Существует несколько модификаций фундаментных блоков.
Сплошные обладают большей несущей способностью, элементы с вырезом на торце позволяют получить более надежное соединение (путем заливки раствором), пустотелые используют в местах, где необходима прокладка различных коммуникаций.
Все блоки данного класса изготовлены из тяжелых марок бетона, они должны отвечать требованиям ГОСТ на основания и фундаменты.
Существует целый ряд типоразмеров, позволяющих возвести конструкцию с различной несущей способностью:
- По высоте отличают два основных стандарта — 280 и 580 мм.
- По ширине блоки делят на следующие виды — от 300 до 600 мм (с шагом 100 мм).
- По длине так же разделяются на целые и доборные элементы (880; 1180 и 2380 мм).
В каких случаях стоит применять плитный фундамент для дома и виды плитных фундаментов
Фундамент плита технология строительства
Данный тип основания закладывается под всей площадью будущей постройки и характеризуются максимальной устойчивостью к нагрузкам на изгиб и разрыв и выталкивающим воздействиям грунта. Как следствие, такой фундамент подходит для строительства на любых ровных участках, включая песчаные, торфяные, болотистые, часто подтопляемые, пучинистые и слабые грунты (супеси и суглинки с несущими способностями в пределах 2,5 кг/см2).
Точные параметры плиты обосновываются расчетом, но в целом она без проблем выдерживает вес домов из тяжелых стройматериалов с этажностью в пределах 3.
Максимальный экономический эффект от заложения плиты достигается при ведении строительства на нестабильных или пучинистых грунтах с большой глубиной промерзания (в особо сложных случаях ей нет альтернатив). Данный тип фундамента не относится к бюджетным, но вложения на его строительство окупаются долгим сроком службы и надежностью. Ограничения проявляются лишь в невозможности обустройства подвалов у плит мелкого заложения и в жестких требованиях к ровности участка.
Несмотря на единые требования технологии (наличие плотной подушки из песка и щебня, обязательная гидроизоляция подошвы и армирование конструкции, выбор толщины плиты в пределах 10-40 см, соответствие ГОСТ Р 54257-2010 и другим строительным нормативам) фундаменты такого типа могут иметь разную глубину заложения и другие отличия.
В зависимости от конструктивных особенностей и способа обустройства выделяют:
• Незаглубленные, мало- и сильнозаглубленные фундаментные плиты. Первые идеально подходят для ведения строительства на любых грунтах кроме сильнопучинистых, вторые закладываются после снятия небольшого слоя плодородного грунта и имеют универсальные рабочие характеристики, третьи стоят дороже всего и выбираются при наличии в проекте подвала или подземных этажей.
• Монолитные, сборные или сборно-монолитные конструкции. В большинстве случаев такой фундамент заливается непосредственно на месте, но иногда функции основании выполняет цельное ж/б изделие заводского качества или сборные конструкции из плит перекрытий.
• Обычные ровные плиты и конструкции, усиленные дополнительными ребрами жесткости или сваями.
Обычный и утепленный
В зависимости от типа пирога все плитные фундаменты разделяются на обычные и утепленные.
Плита обычная
Размещение утепляющей прослойки не является обязательным условием возведения плиты, но ее наличие существенно сокращает тепловые потери через низ здания и продляет срок службы основания.
Лучше всего для этих целей подходят специализированные плиты уплотненного пенополистирола, укладываемые как минимум в 2 слоя при обычной форме краев или в 1 слой и более при использовании листов с L-кромкой или замковыми системами.
Суммарная толщина утепляющей прослойки зависит от условий эксплуатации и поставленных задач и составляет 10-15 см у обычных оснований и не менее 20 см у фундаментов, закладываемых по технологии «шведская плита» (УШП).
Последние, в свою очередь, относятся к конструкциям мелкого заложения и признаны оптимальными при ведении строительства на пучинистых и подтопляемых грунтах.
С закладкой теплого пола и без
При отсутствии утепляющей прослойки в пироге плитного фундамента заложение элементов теплого пола в ходе бетонирования не имеет смысла. Львиная доля тепла в таких системах уходит на обогрев бетона и грунта, их КПД существенно снижается.
Утепленная шведская плита
В УШП и их аналогах, наоборот, комплексные действия только приветствуются. В частности, в таких конструкциях помимо основных инженерных коммуникаций успешно размещают трубы водяного теплого пола. После завершения этапа бетонирования и шлифовки поверхность плиты пригодна к монтажу напольных покрытий, сроки строительства частного дома и расходы на его отопление сокращаются.
Как рассчитать диаметр арматуры
При армировании плитного фундамента, даже по схемам можно сделать примерные расчеты материала. Общую площадь сечения арматуры для монолитного основания в одном направлении берут не меньше 0.3 % от общих показателей сечения фундамента. Если длина стороны плиты меньше 3 м, подойдет диаметр стержня 1 см, при большей длине – 1,2 см. Вертикальные прутки должны быть не менее 6 см. Максимальные размеры изделий 4 см, в практическом применении используют 1.2, 1.4, 1.6 см.
Пример расчета
В исходных данных указана железобетонная поверхность 8х8 м. Рекомендованный размер шага для частных домов 20 см. В данном примере не рассматривается усиление зон, где будут расположены несущие стены. Для определения диаметров следует учитывать, что укладка будет производиться в два ряда. Потому что толщина конструкции превышает 15 см.
Арматурная сеткаИсточник slo.wikiwiex.ru
Расчет нужной площади металлических стержней производят по такой последовательности:
- вычисление площади поперечного сечения фундаментного основания: 8 м * 0.2 м = 1.6 м2;
- расчеты минимальной площади всего арматурного материала: 1.6 м2 * 0.3 % = 0.0048 м2 (36см2);
- показатели минимальной площади арматуры, одно направление, один ряд: 48 см2/2 = 24 см2.
Для того чтобы правильно рассчитать количество стройматериалов рекомендуется использовать схему. При вычислении длины прутков также следует учесть:
- толщину бетонного слоя предназначенного для защиты – 2-3 см с двух сторон;
- допустимый нахлест;
- вертикальное армирование;
- количество стержней для П-образных хомутов.
Конечная цель проектирования
Результатом проектирования должен быть:
- сборочный чертеж монолитного фундамента;
- текстовые документы – расчеты и обоснования проекта;
- план разметки фундамента и привязка его к местности;
- план отрывки котлована;
- план сооружения опалубки;
- план размещения материалов на строительной площадке;
- планы доставки и заливки бетона, согласованные по времени.
Расчет фундаментной плиты можно провести методом конечных элементов.
Но проще всего рассчитать фундаментную плиту, используя калькулятор расчета. В нем заложены все нужные формулы и методики.
Некоторые калькуляторы помогают рассчитать нужное количество песка, цемента, щебня, общее количество и стоимость материалов.
По результатам расчётов разрабатывается сборочный чертеж монолитного фундамента и все детализированные чертежи:
- закладных деталей;
- сборочный чертеж и деталировка арматурного каркаса;
- рассчитанная схема размещения готовых каркасных сеток;
- примерное устройство одноразовой опалубки из досок или устройство металлической многоразовой опалубки и схема ее использования т. п.
Производим расчет плитного фундамент
Самым важным моментом в расчете является определение толщины плиты основания здания. Полный и наиболее точный расчет производит профессиональный строитель, имеющий соответствующий уровень знаний, опыта проектирования. Но на это нужно время, деньги и наличие профессионала. Частному непрофессиональному застройщику с небольшим превышением материалоемкости и меньшей точностью может быть достаточно более простого расчета фундаментной плиты.
1. Начинается расчет с определения типа грунта под будущим зданием.
Например, у вас пески мелкие со средней плотностью. Они выдерживают удельное давление фундамента в 0,35 кг/см2.
Таблица определения типа грунта
2. Рассчитываем общую массу будущего дома
- Зная размеры дома, места окон, дверей, проемов, материал стен, перекрытий, их конфигурацию и толщину конструкций и, учитывая удельный вес материалов, определяем вес отдельных частей здания.
- Просуммировав найденные величины, получаем общую массу здания.
- Имея площадь здания, рассчитываем его снеговую нагрузку, связанную с углом наклона крыши и региона строительства.
Расчет плитного фундамента
3. Рассчитываем удельное давление здания на грунт
Рассчитанная общая масса здания делится на площадь фундаментной монолитной плиты. Получаем удельное давление здания на грунт (без веса фундамента). Определяем необходимый вес плиты.
4. Рассчитываем оптимальный объем и толщину фундамента
Массу плиты делим на плотность железобетона, равную примерно 2500 кг/куб. м. Объем делим на площадь плиты, получаем ее толщину.
5. Округляем полученную толщину
Округляем полученную толщину до большего и меньшего значений, кратных размеру строительного шага 50 мм. Выбираем подходящее значение и, учитывая его, пересчитываем массу фундаментной плиты. Сложив полученную массу с массой дома, рассчитываем удельное давление на грунт.
Затем сравниваем полученные цифры с табличными характеристиками грунта площадки. Разброс должен быть менее ± 25%.
Ребристые плиты перекрытия
Армированные РПП, обладая высокими прочностными характеристиками, способны выдерживать как статическую, так и динамическую нагрузки. В РПП могут присутствовать технологические полости (например, для обустройства вентиляции или освещения). Наличие специальных петель упрощает погрузку/разгрузку и установку плит.
Высота РПП составляет либо 300 мм (их используют при возведении торгово-развлекательных комплексов, бассейнов, актовых и спортивных залов), либо 400 мм (их применяют при сооружении промышленных объектов). О длине и ширине изделий читайте ниже.
Маркировка и размеры
Состоит она из буквенно-цифрового сочетания:
1-ая группа обозначает наименование плиты и ее типоразмер. ПГ – плоская плита, ПВ/ПОВ – с отверстиями для обустройства вентиляции, ПС/ПФ/ПОС/ПОВ – для проведения освещения, ПОЛ/ПЛ – под сброс кровли. Для РПП, имеющих толщину 300 мм, длина изделий всех трех типоразмеров одинакова: она составляет 5650 мм. Отличаются плиты только шириной: для П1 – это 2985 мм, для П2 – 1485 мм, а для П3 – 935 мм (ГОСТ 21506-87, введенный в действие 01.01.1988 года). Для РПП, имеющих высоту 400 мм, существует девять типоразмеров: 1П1, 1П2, 1П3, 1П4, 1П5, 1П6, 1П7, 1П8 и 2П1. Первые шесть опираются на полки ригелей и являются напряженными, так как имеют арматурное усиление; седьмой и восьмой такие же, только не усиленные. Девятый типоразмер – это плиты с опорой на верхнюю часть ригеля каркаса сооружения (его габаритные размеры: длина – 2950 мм, ширина – 1485 мм).
На заметку! Длина плит типоразмеров 1П1, 1П3, 1П5 и 1П7 одинакова: 5550 мм. Ширина же равна 2985 мм, 1485 мм, 935 мм и 740 мм соответственно. Длина изделий типоразмеров 1П2, 1П4, 1П6 и 1П7 идентична и составляет 5050 мм. Ширина же равна 2985 мм, 1485 мм, 935 мм и 740 мм соответственно (ГОСТ 27215-2013, введенный в действие 01.01.2015 года).
2-ая группа обозначает максимальную нагрузку, которую плита может выдержать; класс напрягаемой арматуры и вид бетона, который использовался при изготовлении изделия.
На заметку! Если плиту изготовили из легкого бетона, то в маркировке присутствует буква Л.
- 3-я группа обозначает наличие шахт для обустройства вентиляции или вентиляторов. Если в маркировке указана цифра 1, то диаметр отверстия составляет 400 мм, 2 – 700 мм, а 3 – 1000 мм.
- Также может содержаться дополнительная информация (например, устойчивость к землетрясениям).
Так, например, маркировка П3-1АтVЛ означает, что это плита третьего типоразмера (то есть, она имеет длину 5650 мм, а ширину 935 мм); с напрягаемой арматурой класса АтV, а изготовлена она из легкого бетона.
Достоинства и недостатки
Плюсы:
Использование при производстве изделий материала высокого качества. Длительный эксплуатационный срок (до 20 лет и больше). Относительно невысокая стоимость. Меньшая звукопроницаемость (по сравнению, например, с ППП). Прочность и надежность (это обеспечивается наличием не только продольных, но и поперечных ребер жесткости)
Особенно это важно для регионов с повышенной сейсмичностью. Подобные плиты отличаются высокими показателями устойчивости не только к механическим воздействиям, но и климатическим. То есть, возможность использовать РПП и при -40 градусов по Цельсию, и при +50, а также в условиях агрессивных сред
Простота монтажных работ, а также их безопасность. Высокий класс огнестойкости
То есть, возможность использовать РПП и при -40 градусов по Цельсию, и при +50, а также в условиях агрессивных сред. Простота монтажных работ, а также их безопасность. Высокий класс огнестойкости.
Единственным минусом является необходимость прибегать к помощи грузоподъемного оборудования для монтажа ребристых плит перекрытия ввиду их большого веса (даже изделий небольших габаритов).
Принцип расчета нагрузки на плитный фундамент
Точный расчёт можно произвести только с помощью профессионалов, которые выполнят качественную оценку грунта на участке и высчитают возможность будущего базиса
Чтобы сделать своими руками качественный монолитный фундамент-плиту, необходимо провести верные расчеты его несущей способности. То есть вычислить нагрузку на продавливание грунта при определенной массе будущего дома.
Однако при выполнении строительных работ своими руками можно также самостоятельно произвести расчёт количества бетона и вычислить его оптимальную марку для приготовления раствора. Отметим, что лучше всего купить нужное количество готового раствора, чем своими руками замешивать около 13-15 кубов смеси при помощи бетономешалки. Это будет и трудоёмко, и затратно по времени. Кроме того, согласно технологии строительства плитного фундамента бетон нужно заливать за один подход.
Расчёт марки цемента производят методом математических операций. К примеру, имеем такие исходные данные:
Стоит также подсчитать и количество арматуры для строительства монолитной плиты. Её закупают по весу из расчета 120-130 кг/м3 готового бетона.
Схемы армирования ленточного фундамента
Арматура представляет собой стальной стержень гладкого или ребристого профиля. Наиболее часто используемые диаметры от 6 до32 мм.
В процессе эксплуатации фундамент постоянно подвергается различным нагрузкам, например, от веса самого дома или различных движений грунта, в то числе, из-за сил морозного пучения. Если рассматривать упрощенно, то нижняя часть ленты фундамента испытывает преимущественно нагрузку на растяжение, а верхняя часть – нагрузку на сжатие.
Поскольку устойчивость бетона к сжатию в 50 раз выше, чем к растяжению, а
стальная арматура, наоборот, способна воспринимать большие нагрузки на растяжение, можно сделать вывод, что необходимо армирование нижней части ленточного фундамента. В то же время необходимо помнить о силах морозного пучения, подъемная сила которых может превысить вес дома и вызвать растяжение в верхней части ленточного фундамента.
Поэтому необходимо армирование нижней и верхней части ленточного фундамента. По сути, бетон с помощью армирования превращают в новый материал – железобетон, который способен выдерживать растягивающие и сжимающие нагрузки. Армировать же среднюю часть ленточного фундамента не имеет смысла, так как она практически не испытывает нагрузок.
На рисунке показана примерная схема армирования ленточного фундамента.
Продольные ярусы арматуры располагаются в верхней и нижней части фундамента, так как совместно с бетоном воспринимают основные нагрузки сжатия и растяжения, действующие вдоль продольной оси фундамента. При необходимости, если это потребуется при расчете, можно установить дополнительные ярусы. В качестве продольной используется арматура класса А III , которая представляет собой круглые профили, диаметром обычно от 10 до16 мм, с двумя продольными ребрами и поперечными выступами, идущими по трехзаходной винтовой линии.
Если высота фундамента более 15 см необходимо устанавливать вертикальную поперечную арматуру, в качестве которой используют преимущественно гладкие стержни класса А I диаметром 6 –8 мм.
Поперечная арматура при армировании ленточного фундамента устанавливается исходя из расчета нагрузок, действующих вдоль поперечной оси фундамента. Установка поперечной арматуры ограничивает развитие трещин в бетоне и закрепляет рабочие продольные стержни в проектном положении. Поперечную арматуру лучше гнуть в рамки и устанавливать продольную арматуру внутри этих рамок.
Расстояния между прутами продольного армирования и шаг поперечного армирования ленточного фундамента определяется СНиП 52-01-2003:
Расстояние между стержнями арматуры следует принимать не менее диаметра арматуры и не менее25 мм.
7.3.6 Расстояние между стержнями продольной рабочей арматуры следует принимать с учетом типа железобетонного элемента (колонны, балки, плиты, стены), ширины и высоты сечения элемента и не более величины, обеспечивающей эффективное вовлечение в работу бетона, равномерное распределение напряжений и деформаций по ширине сечения элемента, а также ограничение ширины раскрытия трещин между стержнями арматуры. При этом расстояние между стержнями продольной рабочей арматуры следует принимать не более двукратной высоты сечения элемента и не более400 мм, а в линейных внецентренно сжатых элементах в направлении плоскости изгиба — не более500 мм.
7.3.7 В железобетонных элементах, в которых поперечная сила по расчету не может быть воспринята только бетоном, следует устанавливать поперечную арматуру с шагом не более величины, обеспечивающей включение в работу поперечной арматуры при образовании и развитии наклонных трещин. При этом шаг поперечной арматуры следует принимать не более половины рабочей высоты сечения элемента и не более300 мм.
Также при армировании ленточного фундамента следует помнить, арматура должна отстоять от краев опалубки и верхнего уровня заливки бетона на 5-8 см.
Соединение отдельных прутов арматуры осуществляется при помощи вязальной проволоки и специального вязального крючка. Сваривать допускается только арматуру, которая в своей маркировке имеет букву «С», например А500С.
Схемы армирования углов и примыканий ленточного фундамента
Для армирования углов и примыканий арматуру класса А III требуется гнуть. Не допускается армирование углов простым перекрестием арматуры, если армирование углов фундамента ведется отдельными стержнями продольной арматуры.
Монолитный фундамент должен представлять собой единую жесткую пространственную раму, а это возможно только при правильном армировании углов и примыканий фундамента.
монолитной плиты
Данные длявыполнения проекта
1. | Шаг колонн в продольном направлении, м | 6,00 |
2. | Шаг колонн в поперечном направлении, м | 7,60 |
3. | Число пролетов в продольном направлении | 6 |
4. | Число пролетов в поперечном направлении | 4 |
5. | Высота этажа, м | |
6. | Количество этажей | 6 |
7. | Временная нормативная нагрузка на перекрытие, кН/м2 | 4,0 |
8. | Постоянная нормативная нагрузка от массы пола, кН/м2 | 1.2 |
9. | Класс бетона монолитной конструкции и фундамента | В15 |
10. | Класс бетона для сборных конструкций | В30 |
11. | Класс арматуры монолитной конструкции и фундамента | А-III |
12. | Класс арматуры сборных ненапрягаемых конструкций | A-III |
13. | Класс предварительно ненапрягаемой арматуры | A-IV |
14. | Способ натяжения арматуры на упоры | |
15. | Условия твердения бетона | |
16. | Тип плиты перекрытия | ребр |
17. | Вид бетона для плиты | ЛЕГЕИЙ |
18. | Глубина заложения фундамента, м | |
19. | Условное расчетное сопротивление грунта, мПа | |
20. | Район строительства | БРАТСК |
21. | Влажность окружающей среды | 90% |
22. | Класс ответственности здания | II |
Назначаем предварительно следующиезначения геометрических размеровэлементов перекрытий:
высота и ширина поперечного сечениявторостепенных балок:
высота и ширина поперечного сеченияглавных балок:
Толщина плиты 8 см (80мм)
1.1 Расчетные пролеты
топлита балочного типа
Рис. 1.1 Конструктивная схема монолитногоребристого перекрытия
1 – главная балка;2 – второстепенная балка; условнаяполоса шириной 1 м для расчета плиты
1.2 Сбор нагрузкок
Для расчета плиты в плане перекрытияусловно выделяем полосу шириной 1 м (рис1.1). Плита будет работать как неразрезнаябалка, опорами которой служат второстепеннаябалка и наружные кирпичные стены. Приэтом нагрузка на 1 м плиты будет равнанагрузке на 1м2перекрытия. Подсчетнагрузок на плиту дан в таблице 1.1
Таблица на 1 м2 плитымонолитного перекрытия
Вид нагрузки | Нормативная нагрузка кН/м2 | Коэффициент надежности по нагрузке | Расчетная нагрузка кН/м2 |
Постоянная: от массы плиты (h=0,08м;q=25кН/м3) | 0,08∙25=2,00 | 1,1 | 2,20 |
от массы пола Итого | 1,2 | 1,2 | 1,44 g=3,64 |
Временная | 4 | 1,2 | v=4,8 |
Всего | 8,18 |
С учетом коэффициента надежности поназначению здания расчетная нагрузкана 1 м плиты:
Определим изгибающие моменты с учетомперераспределения усилий:
в средних пролетах и на средних опорах
в первом пролете и на первой промежуточнойопоре:
Как определить расход арматуры
Нормы расхода арматурных элементов, рассчитываемые на м 3 конструкций из железобетона, зависят от целого ряда факторов: назначения таких конструкций, используемых для создания бетона цемента и добавок, которые в нем присутствуют. Такие нормы, как уже говорилось выше, регулируются требованиями ГОСТов, но в частном строительстве можно ориентироваться не на этот нормативный документ, а на Государственные элементарные сметные нормы (ГЭСН) или на Федеральные единичные расценки (ФЕР).
Так, согласно ГЭСН 81-02-06-81, для армирования монолитного фундамента общего назначения, объем которого составляет 5 м 3 , нужно использовать 1 тонну металла. При этом металл, под которым и подразумевается арматурный каркас, должен быть равномерно распределен по всему объему бетона. В сборнике ФЕР, в отличие от ГЭСН, средний расход арматуры в расчете на 1 м 3 бетона приводится для конструкций различных типов. Так, по ФЕР, для армирования 1м 3 объемного фундамента (до 1 м в толщину и до 2 м в высоту), в котором имеются пазы, стаканы и подколонники, нужно 187 кг металла, а для бетонных конструкций плоского типа (например, бетонного пола) – 81 кг арматуры на 1 м 3 .
Расчетная масса 1 м стальной арматуры
Удобство использования ГЭСН заключается в том, что с помощью этих нормативов можно также определить точное количество раствора бетона, используя для этого коэффициенты, учитывающие трудно устранимые отходы арматуры, которая в таком растворе будет содержаться.
Однако, конечно, определить более точное количество арматуры, которое вам потребуется для бетона фундамента или перекрытия, позволяют вышеуказанные ГОСТы.
Минимальные нормативные диаметры арматуры
Маркировка
На финальной стадии производства в течение процедуры приемки представители отдела технического контроля завода-изготовителя наносят на готовую плиту маркировку. Шифр в виде цифробуквенной кодировки отражает. Код стоит из следующих элементов:
- ФЛ — буквенное значение марки изделия ленточного фундамента;
- первый индекс – цифровое значение ширины плиты;
- второй индекс — величина соответствующая длине плиты;
- третий индекс – показатель несущей способности отдельно взятого блока.
Величины габаритных размеров приводятся в маркировке в дециметрах с округлением в большую сторону. При этом рядом должна приводиться информация о дате изготовления изделия. Для изделий, которые в течение всего срока эксплуатации подвержены воздействию агрессивных сред приводится показатель проницаемости бетона в виде литер:
- П — обозначение для материала с пониженным значением проницаемости;
- О – присваивается изделиям, выполненным из бетонов с особо низкой проницаемостью.
Помимо этого в маркировке могут приводиться данные о наличии конструктивных особенностей изделия (выпусков арматуры, встроенных закладных), которые включаются в третью группу индекса в виде цифр или букв.